传送门
解析:
其实用DFSDFSDFS序可以将很多树剖能做的东西的复杂度优化一个log\loglog,不过需要一点小小的转化,因为DFSDFSDFS序只能处理子树问题。
显然这道题直接用树剖做是O(nlog2n)O(n\log^2n)O(nlog2n)的,但是用纯粹的DFSDFSDFS序+树状数组可以做到O(nlogn)O(n\log n)O(nlogn)。
思路;
对于不同修改对每个询问的影响我们分开统计,所以其实就是两种问题
1.单点加,链求和
首先用差分的思想可以将路径求和变为点到根的路径求和,就是链求和。
考虑什么样的修改对什么样的询问有贡献。
一个修改(u,W)(u,W)(u,W)(即将节点uuu的权值加上WWW)对询问vvv有贡献,当且仅当vvv在uuu的子树中,且贡献为WWW。
所以一个单点修改我们可以转化为子树加,链求和转化为在链的底端单点求和,这样DFSDFSDFS序就可以做了。
2.子树加,链求和
首先还是差分一下,求点到根的路径和。
一个修改(u,W)(u,W)(u,W)对询问vvv有贡献,当且仅当vvv在uuu的子树中,且贡献为W×(depv−depu+1)W\times (dep_v-dep_u+1)W×(depv−depu+1)。拆开变成W×(depv+1)−W×depuW\times(dep_v+1)-W\times dep_uW×(depv+1)−W×depu。
发现后面的W×depuW\times dep_uW×depu实际上不会随着vvv的改变而改变的,也就是说,子树内每个点都会接受这个贡献,直接子树加,单点询问,和操作1的树状数组可以共用。
而前面的W×(depv+1)W\times(dep_v+1)W×(depv+1),实际上不变的只有WWW,所以我们需要另外开一棵树状数组,记录每个点接受了多少WWW,询问的时候单独×(depv+1)×(dep_v+1)×(depv+1)。
于是这道题就在O(nlogn)O(n\log n)O(nlogn)的时间内完美解决了。
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define re register
#define gc getchar
#define pc putchar
#define cs const
#define int ll
inline int getint(){
re int num;
re char c;
re bool f=0;
while(!isdigit(c=gc()))if(c=='-')f=1;num=c^48;
while(isdigit(c=gc()))num=(num<<1)+(num<<3)+(c^48);
return f?-num:num;
}
inline void outint(ll a){
static char ch[23];
if(a==0)pc('0');
if(a<0)pc('-'),a=-a;
while(a)ch[++ch[0]]=a-a/10*10,a/=10;
while(ch[0])pc(ch[ch[0]--]^48);
}
cs int N=1000006;
vector<int> edge[N];
inline void addedge(int u,int v){
edge[u].push_back(v);
edge[v].push_back(u);
}
struct BIT{
ll val[N];
inline int lowbit(int x){return x&-x;}
inline void add(int pos,ll v){for(;pos<N;pos+=lowbit(pos))val[pos]+=v;}
inline ll query(int pos){ll res=0;for(;pos;pos-=lowbit(pos))res+=val[pos];return res;}
inline void add(int l,int r,ll v){add(l,v);add(r+1,-v);}
}b0,b1;
int n,m,root;
int fa[N],dep[N],siz[N],son[N],top[N],val[N],in[N],tot,pos[N],out[N];
inline void dfs1(int u){
siz[u]=1;
for(int re e=0;e<edge[u].size();++e){
int re v=edge[u][e];
if(v==fa[u])continue;
fa[v]=u;
dep[v]=dep[u]+1;
dfs1(v);
siz[u]+=siz[v];
if(siz[v]>siz[son[u]])son[u]=v;
}
}
inline void dfs2(int u){
pos[in[u]=++tot]=u;
if(son[u]){
top[son[u]]=top[u];
val[son[u]]+=val[u];
dfs2(son[u]);
}
for(int re e=0;e<edge[u].size();++e){
int re v=edge[u][e];
if(v==fa[u]||v==son[u])continue;
top[v]=v;
val[v]+=val[u];
dfs2(v);
}
out[u]=tot;
}
inline void tree_dissection(){
dep[root]=1;
dfs1(root);
top[root]=root;
dfs2(root);
}
inline int LCA(int u,int v){
while(top[u]!=top[v]){
if(dep[top[u]]>dep[top[v]])swap(u,v);
v=fa[top[v]];
}
return dep[u]>dep[v]?v:u;
}
inline ll query(int a){
if(a==0)return 0;
return val[a]+b0.query(in[a])+b1.query(in[a])*(dep[a]+1);
}
signed main(){
n=getint();
m=getint();
root=getint();
for(int re i=1;i<=n;++i)val[i]=getint();
for(int re i=1;i<n;++i){
int u=getint(),v=getint();
addedge(u,v);
}
tree_dissection();
while(m--){
int op=getint(),a=getint(),b=getint();
switch(op){
case 1:{
b0.add(in[a],out[a],b);
break;
}
case 2:{
b1.add(in[a],out[a],b);
b0.add(in[a],out[a],-1ll*b*(dep[a]));
break;
}
case 3:{
int lca=LCA(a,b);
outint(query(a)+query(b)-query(lca)-query(fa[lca]));pc('\n');
break;
}
}
}
return 0;
}