pg18
Carneiro等人[CCM07]将图像标注问题转化为有指导多类标注(supervised multiclass labeling)问题,在其方法中,为每个类学习一个类分布模型,在其标注过程中可为待标注图像同时进行多标签分类。
说明这种方法仍然采用的是二分的方式,对于每种类别分别训练一个标注模型,各种模型同时进行,也就形成了多分类。
机器学习领域的多标签分类方法并不多见。通常的做法包括二元分类方法以及直接的多类方法[LZZ06】。二元方法是将多标签分类问题转换为多个独立的二元分类问题,每个二元问题用于检测给定标注词是否出现在图像中
【VZ98][LS02].该方法最普遍使用的方法,如上节中所述基于SVM的分类方法。
说明这就是一般问题的思路,其实多分类标签的问题,比一般的效果好,因为多分类标签分类的很难做到面面俱到。