基于多标签学习的图像语义自动标注

pg18 

Carneiro等人[CCM07]将图像标注问题转化为有指导多类标注(supervised multiclass labeling)问题,在其方法中,为每个类学习一个类分布模型,在其标注过程中可为待标注图像同时进行多标签分类。

说明这种方法仍然采用的是二分的方式,对于每种类别分别训练一个标注模型,各种模型同时进行,也就形成了多分类。

机器学习领域的多标签分类方法并不多见。通常的做法包括二元分类方法以及直接的多类方法[LZZ06】。二元方法是将多标签分类问题转换为多个独立的二元分类问题,每个二元问题用于检测给定标注词是否出现在图像中
【VZ98][LS02].该方法最普遍使用的方法,如上节中所述基于SVM的分类方法。


说明这就是一般问题的思路,其实多分类标签的问题,比一般的效果好,因为多分类标签分类的很难做到面面俱到。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值