【模板】最小生成树

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz

输入格式

第一行包含两个整数 N,M,表示该图共有 N 个结点和 M 条无向边。

接下来 M 行每行包含三个整数Xi​,Yi​,Zi​,表示有一条长度为Zi​ 的无向边连接结点 Xi​,Yi​。

输出格式

如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz

输入输出样例

输入 #1

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

输出 #1

7

说明/提示

数据规模:

对于 20%20% 的数据,N≤5,M≤20。

对于 40%40% 的数据,N≤50,M≤2500。

对于 70%70% 的数据,N≤500,M≤104。

对于 100%100% 的数据:1≤N≤5000,1≤M≤2×105,1≤Zi​≤104。

样例解释:

所以最小生成树的总边权为 2+2+3=7。

代码如下:
 

#include<bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
using namespace std;
int main(){
	int n,m;
	cin>>n>>m;
	vector<vector<int> >G(n+1);
	vector<vector<int> >val(n+1);
	for(int i=0;i<m;i++){
		int u,v,w;
		cin>>u>>v>>w;
		G[u].push_back(v);
		G[v].push_back(u);
		val[u].push_back(w);
		val[v].push_back(w);
	}
	int res=0;
	vector<bool> visit(n+1);
	visit[1]=1;
	priority_queue<pair<int,int>,vector<pii>,greater<pii> > pq;
	pq.push({0,1});
	while(!pq.empty()){
		pii p=pq.top();
		pq.pop();
		if(visit[p.se]) continue;
		visit[p.se]=1;
		res+=p.fi;
		for(int i=0;i<G[p.se].size();i++){
			pq.push({val[p.se][i],G[p.se][i]});
		}
	}
	for(int i=1;i<=n;i++){
		if(!visit[i]){
			cout<<"orz"<<endl;
			return 0;
		}
	}
	cout<<res<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值