Spark开发语言Scala语言

Spark内核是由Scala语言开发的,因此使用Scala语言开发Spark应用程序是自然而然的事情。如果你对Scala语言还不太熟悉,可以阅读网络教程A Scala Tutorial for Java Programmers或者相关Scala书籍进行学习。

本文将介绍3个Scala Spark编程实例,分别是WordCount、TopK和SparkJoin,分别代表了Spark的三种典型应用。

1. WordCount编程实例

WordCount是一个最简单的分布式应用实例,主要功能是统计输入目录中所有单词出现的总次数,编写步骤如下:

步骤1:创建一个SparkContext对象,该对象有四个参数:Spark master位置、应用程序名称,Spark安装目录和jar存放位置,对于Spark On YARN而言,最重要的是前两个参数,第一个参数指定为“yarn-standalone”,第二个参数是自定义的字符串,举例如下:
  1. val sc = new SparkContext(args(0), "WordCount",
  2.     System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_TEST_JAR")))
复制代码
步骤2:读取输入数据。我们要从HDFS上读取文本数据,可以使用SparkContext中的textFile函数将输入文件转换为一个RDD,该函数采用的是Hadoop中的TextInputFormat解析输入数据,举例如下:
  1. val textFile = sc.textFile(args(1))
复制代码
当然,Spark允许你采用任何Hadoop InputFormat,比如二进制输入格式SequenceFileInputFormat,此时你可以使用SparkContext中的hadoopRDD函数,举例如下:
  1. val inputFormatClass = classOf[SequenceFileInputFormat[Text,Text]]
  2. var hadoopRdd = sc.hadoopRDD(conf, inputFormatClass, classOf[Text], classOf[Text])
复制代码
或者直接创建一个HadoopRDD对象:
  1. var hadoopRdd = new HadoopRDD(sc, conf,
  2.      classOf[SequenceFileInputFormat[Text,Text, classOf[Text], classOf[Text])
复制代码
步骤3:通过RDD转换算子操作和转换RDD,对于WordCount而言,首先需要从输入数据中每行字符串中解析出单词,然后将相同单词放到一个桶中,最后统计每个桶中每个单词出现的频率,举例如下:
  1. val result = hadoopRdd.flatMap{
  2.         case(key, value)  => value.toString().split("\\s+");
  3. }.map(word => (word, 1)). reduceByKey (_ + _)
复制代码
其中,flatMap函数可以将一条记录转换成多条记录(一对多关系),map函数将一条记录转换为另一条记录(一对一关系),reduceByKey函数将key相同的数据划分到一个桶中,并以key为单位分组进行计算,这些函数的具体含义可参考:Spark Transformation。

步骤4:将产生的RDD数据集保存到HDFS上。可以使用SparkContext中的saveAsTextFile哈数将数据集保存到HDFS目录下,默认采用Hadoop提供的TextOutputFormat,每条记录以“(key,value)”的形式打印输出,你也可以采用saveAsSequenceFile函数将数据保存为SequenceFile格式等,举例如下:
  1. result.saveAsSequenceFile(args(2))
复制代码
当然,一般我们写Spark程序时,需要包含以下两个头文件:
  1. import org.apache.spark._
  2. import SparkContext._
复制代码
WordCount完整程序已在“Apache Spark学习:利用Eclipse构建Spark集成开发环境”一文中进行了介绍,在次不赘述。

需要注意的是,指定输入输出文件时,需要指定hdfs的URI,比如输入目录是hdfs://hadoop-test/tmp/input,输出目录是hdfs://hadoop-test/tmp/output,其中,“hdfs://hadoop-test”是由Hadoop配置文件core-site.xml中参数fs.default.name指定的,具体替换成你的配置即可。

2. TopK编程实例

TopK程序的任务是对一堆文本进行词频统计,并返回出现频率最高的K个词。如果采用MapReduce实现,则需要编写两个作业:WordCount和TopK,而使用Spark则只需一个作业,其中WordCount部分已由前面实现了,接下来顺着前面的实现,找到Top K个词。注意,本文的实现并不是最优的,有很大改进空间。

步骤1:首先需要对所有词按照词频排序,如下:
  1. val sorted = result.map {
  2.   case(key, value) => (value, key); //exchange key and value
  3. }.sortByKey(true, 1)
复制代码
步骤2:返回前K个:
  1. val topK = sorted.top(args(3).toInt)
复制代码
步骤3:将K各词打印出来:
  1. topK.foreach(println)
复制代码
注意,对于应用程序标准输出的内容,YARN将保存到Container的stdout日志中。在YARN中,每个Container存在三个日志文件,分别是stdout、stderr和syslog,前两个保存的是标准输出产生的内容,第三个保存的是log4j打印的日志,通常只有第三个日志中有内容。

本程序完整代码、编译好的jar包和运行脚本可以从这里下载。下载之后,按照“Apache Spark学习:利用Eclipse构建Spark集成开发环境”一文操作流程运行即可。

3. SparkJoin编程实例

在推荐领域有一个著名的开放测试集是movielens给的,下载链接是: http://grouplens.org/datasets/movielens/ ,该测试集包含三个文件,分别是ratings.dat、sers.dat、movies.dat,具体介绍可阅读:README.txt,本节给出的SparkJoin实例则通过连接ratings.dat和movies.dat两个文件得到平均得分超过4.0的电影列表,采用的数据集是:ml-1m。程序代码如下:
  1. import org.apache.spark._
  2. import SparkContext._
  3. object SparkJoin {
  4.   def main(args: Array[String]) {
  5.     if (args.length != 4 ){
  6.       println("usage is org.test.WordCount <master> <rating> <movie> <output>")
  7.       return
  8.     }
  9.     val sc = new SparkContext(args(0), "WordCount",
  10.     System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_TEST_JAR")))

  11.     // Read rating from HDFS file
  12.     val textFile = sc.textFile(args(1))

  13.     //extract (movieid, rating)
  14.     val rating = textFile.map(line => {
  15.         val fileds = line.split("::")
  16.         (fileds(1).toInt, fileds(2).toDouble)
  17.        })

  18.     val movieScores = rating
  19.        .groupByKey()
  20.        .map(data => {
  21.          val avg = data._2.sum / data._2.size
  22.          (data._1, avg)
  23.        })

  24.      // Read movie from HDFS file
  25.      val movies = sc.textFile(args(2))
  26.      val movieskey = movies.map(line => {
  27.        val fileds = line.split("::")
  28.         (fileds(0).toInt, fileds(1))
  29.      }).keyBy(tup => tup._1)

  30.      // by join, we get <movie, averageRating, movieName>
  31.      val result = movieScores
  32.        .keyBy(tup => tup._1)
  33.        .join(movieskey)
  34.        .filter(f => f._2._1._2 > 4.0)
  35.        .map(f => (f._1, f._2._1._2, f._2._2._2))

  36.     result.saveAsTextFile(args(3))
  37.   }
  38. }
复制代码
你可以从这里下载代码、编译好的jar包和运行脚本。

这个程序直接使用Spark编写有些麻烦,可以直接在Shark上编写HQL实现,Shark是基于Spark的类似Hive的交互式查询引擎,具体可参考:Shark。

4. 总结

Spark 程序设计对Scala语言的要求不高,正如Hadoop程序设计对Java语言要求不高一样,只要掌握了最基本的语法就能编写程序,且常见的语法和表达方式是很少的。通常,刚开始仿照官方实例编写程序,包括Scala、Java和Python三种语言实例。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值