一、概述
本文档由Gartner发布,旨在解决软件工程领导者(SEL)与数据与分析(D&A)领导者在人工智能(AI)创新中的协同挑战。核心目标是推动两者打破组织孤岛,通过文化与架构变革优化协作,最终支撑企业战略落地。文档适用于正在推进数字化转型的企业,尤其是需要在技术执行与数据治理之间寻求平衡的组织。主要职责包括:
- 软件工程领导者:负责技术驱动创新,提供平台、工具及AI增强型工程实践,优化软件交付价值。
- D&A领导者:聚焦业务赋能,通过数据资产转化为决策智能,优化客户体验并创造商业价值。
- 协同挑战:传统职能分化导致目标失焦、数据分散及责任划分模糊,需通过权责对齐、指标协同和团队架构优化实现高效协作。
二、主要章节
- 概述与主要观点强调SEL与D&A领导者协同的必要性,指出数据孤岛和责任分歧是主要障碍,并提出通过敏捷协同提升生产效率的观点。
- 分析:重构权责矩阵分析AI项目责任分布现状,提出通过跨职能协作构建AI责任矩阵,明确技术执行与数据治理的边界。
- 调整指标:促进跨职能协作探讨如何通过业务成果驱动型指标(ODM)对齐团队目标,解决数据集成与分析的局部优化冲突。
- 优化团队架构:适配运营模式根据企业IT运营模式(如数字产品模式、资产优化型模式),提出软件工程与D&A团队的协作架构设计。. 结论与建议总结关键策略,如重新评估权责、对齐指标、优化团队架构,并强调持续迭代协作机制的重要性。
三、方法论和分析框架
- 调研数据支撑:引用Gartner《2024年数据、分析与软件开发交汇点调研》及网络研讨会投票数据,量化分析AI责任分布与协作趋势。
- 案例分析:通过AI项目责任分歧案例,说明传统模式下的效率瓶颈。
- 框架工具:提出责任矩阵、业务成果驱动型指标(ODM)、IT运营模式分类等分析工具,指导企业制定协作策略。
四、关键发现
- 职能分化与组织孤岛SEL与D&A领导者因角色定位差异(技术驱动 vs. 业务决策)易形成协作壁垒,导致数据分散与目标冲突。
- AI项目的责任碎片化仅23%的企业能明确AI责任归属,41%的责任由IT与非IT部门共同承担,凸显跨职能协同的必要性。
- 敏捷协同的价值开发、数据科学与工程团队的敏捷协作可显著提升数据可及性与生产效率(Gartner调研数据)。
- 指标对齐的关键性局部KPI优化(如数据集成效率)可能与全局业务目标冲突,需通过ODM(如提升销售线索质量)实现战略对齐。
- 团队架构适配运营模式数字产品模式企业更倾向整合软件工程与D&A团队,而资产优化型模式则保持团队独立运作。
五、结论和建议
- 结论:SEL与D&A领导者的协同是AI创新落地的关键,需通过权责重构、指标对齐和架构优化打破组织壁垒。
- 建议:
- 未来展望:随着AI技术迭代加速,跨职能协作机制需持续演进,以应对复杂业务场景需求。