- 博客(15)
- 收藏
- 关注
原创 yolo11 查看未检测到的图片的方法,实现啦
在/root/autodl-tmp/ultralytics-main/ultralytics/engine/predictor.py 下修改。最后 在 所创建环境下 运行 python on.py。在 如图所示位置加入一下 代码。
2024-11-06 11:33:20
615
原创 Python -- 安装虚拟环境报错:returned non-zero exit status 1
获取pip安装文件:wget https://bootstrap.pypa.io/get-pip.py。- 安装虚拟环境:python3 -m venv --without-pip env。- 重新进入虚拟环境:source env/bin/activate。- 切换到虚拟环境:source env/bin/activate。- 安装pip:python get-pip.py。- 确认python:which python。- 退出虚拟环境:deactivate。- 确认pip:which pip。
2024-10-24 23:13:22
797
1
原创 YOLOv10性能评价指标
因此,对于需要在资源有限的设备(如移动设备或嵌入式设备)上运行的深度学习模型,通常需要尽可能地减少模型的FLOPs。这是一个更严格的评价指标,它计算了在50-95%的loU阈值范围内的mAP。测中,如果真实的边界框与预测的边界框重合,则认为该样本被正确召回。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。用于评估模型在给定硬件上的处理速度,即每秒可以处理的图片数量。中,如果模型预测的边界框与真实的边界框重合,则认为预测正确。mAP50表示在50%的loU阈值下的mAP值。
2024-09-05 21:34:35
1503
原创 在深度学习中,**目标检测(Object Detection)和分类(Classification)有什么不同
在深度学习中,**目标检测(Object Detection)
2024-09-05 21:00:49
1366
原创 【在 YOLOv10 的基础上做了修改而导致效果不佳】
如果你已经成功运行了 YOLOv10,说明环境搭建是正确的。不过,如果你在 YOLOv10 的基础上做了修改而导致效果不佳,可能有以下几个原因。我们可以从模型架构、数据集、训练参数、超参数调节等方面进行分析和排查。
2024-08-08 21:54:19
2007
原创 文件拿上来就开始跑,我恐怕是有点大病
上传完数据后,就去执行train.py 发生了一系列错误,猛然发现,我在服务器上没有创建环境,你怎么觉得在服务器上就不需要创建环境呢,真的是这脑袋,还一个一个去搜索错误呢,傻瓜。好吧。拿到文件,先配置环境,不然怎么跑呢,傻瓜。
2024-08-08 15:24:02
252
原创 恒源云OSS数据上传踩坑笔记
将自己的数据传入datasets内,注意的是,这里要求打成压缩包,这里的个人数据.zip指的是数据在本机中的绝对路径.,在个人数据中建立文件夹,名为"datasets"
2024-08-08 14:15:56
309
1
原创 【yolov10改进小记】
跑了几个,效果越来越不好,可能是由于数据集不太好。用yolov10改进进行坑洼数据集的识别,但是改进了10次,效果都不好,差太远啦,用yolov8n.pt map50 是0.7 用yolov10n.pt 0.44 用其他基于yolov10 改进注意力机制,还是改进卷积层,map50 都是0.005左右,能帮我分析下原因麻?是原始数据集的问题?ChatGPT。
2024-08-06 20:00:10
1942
原创 【尝试跑DCNV4 未果】
一个错误:No such file or directory: ':/usr/local/cuda/bin/nvcc': ':/usr/local/cuda/bin/nvcc'导航到存储有sh文件的目录。在Ubuntu中执行sh文件的方法是通过使用终端或命令行界面来运行sh文件。解决办法:export CUDA_HOME=/usr/local/cuda-11.4。可以使用快捷键Ctrl + Alt + T来打开终端。给sh文件赋予执行权限。其中,filename.sh是sh文件的名称。
2024-08-06 11:48:38
467
2
原创 ModuleNotFoundError: No module named ‘mmcv‘
ModuleNotFoundError: No module named 'mmcv'
2024-08-05 20:49:55
294
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅