1、mAP50
mAP是mean Average Precision的缩写,表示在多个类别上的平均精度。
mAP50表示在50%的loU阈值下的mAP值。
2、mAP50-95
这是一个更严格的评价指标,它计算了在50-95%的loU阈值范围内的mAP
值,然后取平均。这能够更准确地评估模型在不同loU阈值下的性能。
3、Precision
精度 (Precision)是评估模型预测正确的正样本的比例。在目标检测
中,如果模型预测的边界框与真实的边界框重合,则认为预测正确。
4、Recall
召回率(Recall)是评估模型能够找出所有真实正样本的比例。在目标检
测中,如果真实的边界框与预测的边界框重合,则认为该样本被正确召回。
5、FPS
全称为Frames Per Second,即每秒帧率。
用于评估模型在给定硬件上的处理速度,即每秒可以处理的图片数量。
该指标对于实现实时检测非常重要,因为只有处理速度快,才能满足实时检测的需求。
6、loU
全称为Intersection over Union,表示交并比。
在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。
loU值越大,表示两个框之间的相似性越高。通常,当loU值大于0.5时,认为可以检测到目标物体。
这个指标常用于评估模型在特定数据集上的检测准确度。
7、FLOPs
全称为Floating Point Operations Per Second,每秒浮点运算次数,表示处理器每秒钟能够执行的浮点运算次数。
常被用来衡量模型的复杂度或者计算成本。一个模型的FLOPs越高,意味着它需要更多的计算资源和时间来进行训练或推理。
因此,对于需要在资源有限的设备(如移动设备或嵌入式设备)上运行的深度学习模型,通常需要尽可能地减少模型的FLOPs。