caffe安装教程(2)/caffe安装与编译

本文详细介绍了在CUDA环境下安装Caffe的步骤,包括安装依赖、修改Makefile.config、解决编译过程中遇到的boost、cblas、libcudart等错误,以及编译pycaffe和matcaffe的注意事项。此外,还提到了使用Anaconda可能导致的问题及解决方案,并强调了编译完成后系统路径的配置和测试验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一节,我们安装好了所有caffe可能用到的软件,我这里再列举一下:
- NVIDIA驱动367.57
- CUDA8.0
- Cudnn v5.1
- MKL(这里我提一句,最后BLAS可以不用MKL,用openblas或者atlas都可以)
- MATLAB2014a
- Anaconda(Python 2.7版)
- OpenCV 2.4.13

接下来,我们进入caffe的安装与编译环节。

  1. 在安装caffe前,我们先来安装一些依赖

    sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler;
    
    sudo apt-get install -y libatlas-base-dev;
    
    sudo apt-get install -y --no-install-recommends libboost-all-dev;
    
    sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev;
    
    sudo apt-get install -y python-pip python-dev python-numpy python-scipy;
    
    sudo apt-get install -y libopencv-dev;
  2. 安装依赖后,我们再来修改Make.config文件,如下:

    
    ## Refer to http://caffe.berkeleyvision.org/installation.html
    
    
    # Contributions simplifying and improving our build system are welcome!
    
    
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    
    USE_CUDNN := 1
    
    
    # CPU-only switch (uncomment to build without GPU support).
    
    
    # CPU_ONLY := 1
    
    
    
    # uncomment to disable IO dependencies and corresponding data layers
    
    USE_OPENCV := 0
    USE_LEVELDB := 0
    USE_LMDB := 0
    
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    
    
    #   You should not set this flag if you will be reading LMDBs with any
    
    
    #   possibility of simultaneous read and write
    
    
    # ALLOW_LMDB_NOLOCK := 1
    
    
    
    # Uncomment if you're using OpenCV 3
    
    
    # OPENCV_VERSION := 3
    
    
    
    # To customize your choice of compiler, uncomment and set the following.
    
    
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    
    
    # CUSTOM_CXX := g++
    
    
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    
    CUDA_DIR := /usr/local/cuda
    
    # On Ubuntu 14.04, if cuda tools are installed via
    
    
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    
    
    # CUDA_DIR := /usr
    
    
    
    # CUDA architecture setting: going with all of them.
    
    
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_50,code=compute_50
    
    
    # BLAS choice:
    
    
    # atlas for ATLAS (default)
    
    
    # mkl for MKL
    
    
    # open for OpenBlas
    
    BLAS := atlas
    
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    
    
    # Leave commented to accept the defaults for your choice of BLAS
    
    
    # (which should work)!
    
    
    #BLAS_INCLUDE :=/opt/intel/mkl/include 
    
    
    #BLAS_LIB :=/opt/intel/mkl/lib/intel64
    
    
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    
    
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    
    
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    
    
    # This is required only if you will compile the matlab interface.
    
    
    # MATLAB directory should contain the mex binary in /bin.
    
    MATLAB_DIR := /usr/local/MATLAB/R2014a 
    
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    
    
    # NOTE: this is required only if you will compile the python interface.
    
    
    # We need to be able to find Python.h and numpy/arrayobject.h.
    
    
    #PYTHON_INCLUDE := /usr/include/python2.7 \
    
        /usr/lib/python2.7/dist-packages/numpy/core/include
    
    # Anaconda Python distribution is quite popular. Include path:
    
    
    # Verify anaconda location, sometimes it's in root.
    
    ANACONDA_HOME := $(HOME)/anaconda2
    PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
        $(ANACONDA_HOME)/include/python2.7 \
        $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
    
    
    # Uncomment to use Python 3 (default is Python 2)
    
    
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    
    
    # PYTHON_INCLUDE := /usr/include/python3.5m \
    
    
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    
    
    # We need to be able to find libpythonX.X.so or .dylib.
    
    
    #PYTHON_LIB := /usr/lib
    
    PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    
    # Homebrew installs numpy in a non standard path (keg only)
    
    
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    
    
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    
    
    # Uncomment to support layers written in Python (will link against Python libs)
    
    WITH_PYTHON_LAYER := 1
    
    
    # Whatever else you find you need goes here.
    
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial
    
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    
    
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    
    
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    
    
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    
    
    # USE_PKG_CONFIG := 1
    
    
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    
    
    # DEBUG := 1
    
    
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    
    TEST_GPUID := 0
    
    
    # enable pretty build (comment to see full commands)
    
    Q ?= @
  3. 最后我们来编译caffe和python,matlab与caffe的接口,并测试。
    编译caffe:

    sudo make all -j16;
    sudo make test -j16;
    sudo make runtest -j16;

    编译pycaffe和matca

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值