- 博客(317)
- 资源 (2)
- 收藏
- 关注
原创 如何在firefox上实现滚动截图
参考网址:http://www.webkaka.com/blog/archives/799.html。选这个用户数最多的,就是火狐自带的截图软件添加到扩展即可。打开火狐浏览器,右上角三条杠,点击扩展与主题。如何使用滚动截图,看下面的gif操作。然后点击图标,选择第一个选项。搜索截图,点击搜索图标。
2025-11-04 14:11:10
270
原创 ControlNet 的具体实现原理,它是怎么学习一张图片的风格的,给一张图片之后,然后怎么办
它只把参考图先变成一张「骨架/结构图」(边缘、深度、姿势、语义分割等),再把这张骨架作为额外条件塞进扩散模型,告诉 UNet “新生成的 latent 必须和这张骨架对齐”。同一张骨架图, prompt 写“油画”就出油画画风,写“赛博朋克”就出霓虹灯,只是构图不变。同一张骨架图, prompt 写“油画”就出油画画风,写“赛博朋克”就出霓虹灯,只是构图不变。颜色、材质、光照、艺术风格仍由 prompt 和 SD 底模决定。颜色、材质、光照、艺术风格仍由 prompt 和 SD 底模决定。
2025-10-14 10:33:38
920
原创 autodl文件存储,文件同步,conda环境同步问题
但是这个autodl-fs是私人同步盘,所以我们看不到,而那个autodl-pub是公共的,可以用但是不可以改,所以没必要隐藏。又转战autodl了,兄弟们,之前用的featurize,pytorch太老了,跟不上我用的AI的节奏。我说左边文件管理器没有这个autodl-fs,操作起来很不方便,于是,AI给我建了个软连接。,就能实现“一次配置,多实例共享,关机不丢”,官方文档同样推荐这种做法。能不能把我现在这个环境的位置移动到/autodl-fs/envs/里。然后就多了个fs,点开就能直接看里面有啥了。
2025-09-20 13:02:34
994
原创 VAE编码和DDIM的逆向映射过程的区别————潜在向量
VAE就像一个压缩包工具,它把图像打包成一个紧凑的文件,适用于需要快速编码和解码的场景。DDIM 逆向过程更像一个艺术家的起稿过程。它不是简单地把图像压缩,而是把它“分解”成一个有特定风格和结构、可以被进一步“绘画”的起点,专门为后续的去噪和再创作而服务。因此,在需要进行图像编辑、风格迁移或基于原始图像生成新图像时,使用 DDIM 的逆向过程来“映射”图像,可以提供比 VAE 更好的控制和效果。
2025-09-18 10:38:30
454
原创 stable diffusion 在整个图片生成过程中,调用VAE U-Net Text-encoder scheduler的顺序流程是什么
训练阶段图像->VAE 编码器->潜在向量文本->->文本嵌入潜在向量噪声文本嵌入->U-Net->预测噪声生成阶段文本->->文本嵌入随机噪声->SchedulerU-Net文本嵌入->迭代去噪->潜在向量->VAE 解码器->生成图像这个流程完美地展示了各个组件如何协同工作,让 Stable Diffusion 能够高效地将文本创意转化为视觉作品。但是这里还要澄清一个问题,如果单纯是VAE编码器将图像映射到潜在空间后得到的向量不是自带噪声的,是一个干净的,压缩过的,没有噪声的图像特征向量。
2025-09-18 10:32:27
1024
原创 DDPM DDIM Imagen , DALL-E2 , and Stable Diffusion 的区别,以及Stable Diffusion的组成,与DDPM的关系,DDPM的组成
首先,Stable Diffusion、DALL-E 2、Imagen 和 DDPM、DDIM 之间是。而 Imagen、DALL-E 2 和 Stable Diffusion 则是基于。(Text-to-Image)的生成技术,但实现方式和核心组件有所不同。所以,你的理解基本是正确的:Stable Diffusion 确实是将。这两种组件共同定义了扩散模型如何从随机噪声中一步步生成清晰的图像。(Diffusion Models)的两种。,实现了在低计算资源下的高效图像生成。
2025-09-18 08:36:28
642
原创 LPIPS、GLIPS是对抗样本图像上的什么指标
LPIPS(Learned Perceptual Image Patch Similarity)和GLIPS(Global-Local Image Perceptual Score)是对抗样本图像上用于评估的指标,主要用于衡量两张图像在人类视觉感知上的相似程度。
2025-09-09 09:53:28
1694
原创 火狐浏览器突然打不开某个网站的所有页面,但是换成chrome浏览器却可以打开
如果你的火狐浏览器能正常打开其他网站,但幕布(mubu.com)是空白页,而 Chrome 能正常打开,那问题大概率不是网络,而是火狐的配置或缓存问题。有些广告屏蔽插件、隐私增强插件(如 uBlock、Privacy Badger、NoScript)会直接拦截页面脚本,导致空白。火狐浏览器打不开幕布这个网站,就是空白页,啥也不显示,能打开其他的,谷歌可以打开幕布网站的原因。,因为幕布这种网页空白通常是 JS 被插件或缓存问题挡掉了。
2025-08-11 10:25:05
938
原创 硬掩码MASK1---初步了解
总结来说,你代码中的硬编码原理就是创建一个二值方块掩码,将扰动限制在该方块区域内。如果你想了解论文中更复杂的硬编码区域攻击(如果他们有的话),你需要在论文的。论文中如果使用这种方式作为基线或示例,那么它的“硬编码”就与你代码的起点是一致的。然而,如果论文想展示更高级的“区域攻击”,他们可能不会仅仅使用一个方块,而是通过。,将图像分为“可修改/关注区域”和“不可修改/忽略区域”。这篇论文中提到的“区域攻击”或“对抗补丁”概念,通常指的是。,在掩码的边界处,从0到1(或从1到0)是瞬间变化的。
2025-07-31 16:50:10
732
原创 离线下载NuGet包管理器
推荐方法:使用 NuGet 包管理器安装(方法 1)。离线方法:如果目标电脑无法访问互联网,可以使用方法 2、3 或 4。如果你有其他问题,或者需要更详细的步骤,请随时告诉我!
2025-03-12 16:40:47
1031
原创 VAE变分自编码器的初步理解
变分自编码器(VAE)就像一台神奇的绘画机,通过两个关键部分——一个负责记录画作的精髓(编码器),另一个负责根据这些精髓创作新画(解码器)——来生成新的数据。它不仅学会了如何还原原作,还能在此基础上创新出各种风格独特的新作品。虽然在生成质量和训练难度上存在一些挑战,但它所提供的概率模型和潜在空间解释能力,使其成为理解和生成数据的重要工具。这就是用费曼学习法讲解VAE的核心思想,希望这个简单的故事能帮助你更好地理解这个强大的生成模型!
2025-02-27 22:08:35
1275
原创 You already have a newer version of the NVIDIA Frameview SDK installed
You already have a newer version of the NVIDIA Frameview SDK installed” 先把电脑已经存在的FrameView SDK 卸载掉,把C:\Program Files\NVIDIA Corporation\FrameViewSDK文件夹删掉。设置-应用-卸载nvidia frameview.
2025-02-09 13:55:54
1480
原创 如何将 Jupyter Notebook (.ipynb) 文件转换为 Python (.py) 文件
或者在命令行里下载个jupyter 然后输入命令进行转换。概要:编写python代码运行将.ipynb转化为.py。别的就是下载一个jupyter Note ,进行转化。所生成的文件在你所在的文件下。然后执行这个代码就行。
2025-02-08 16:52:36
987
原创 Pycharm已经打开,任务栏里有图标,但是看不到界面
你就把鼠标放到图片上的窗口的位置,就是把光标放在任务栏pycharm的图标上,然后会出现红框里的窗口,然后你再这个窗口上右键,然后会有对窗口的操作。就是任务栏显示已打开,然后桌面上不显示窗口,点任务栏的图标也没有反应。原因是之前用扩展显示屏,可能电脑出故障了,重启了。就这个,我选的最大化就出来了。
2025-01-25 09:35:21
381
原创 对抗样本存在的原因
对抗样本的存在源于深度学习模型对高维输入空间的敏感性、局部线性行为、数据流形与分类边界的不匹配,以及模型的非鲁棒特征。要解决这一问题,需要更鲁棒的训练方法和模型设计,如对抗训练、正则化或数据增强等策略。
2024-11-22 22:08:23
768
原创 插入语和同位语的区别
插入语提供额外信息,通常可省略,对句子的核心意思没有影响。同位语则是对名词的补充说明,通常是必要的信息,有助于理解句子中的名词。
2024-10-23 21:30:21
1487
原创 火狐浏览器安装ublockIP受限装不了
ublock 如果在火狐上下不了扩展,如果有梯子,可以换个IP就行,香港行政区就行。如果不行,就得自己去github上下载到本地,然后从本地来安装扩展。详细步骤见我这个链接。
2024-10-15 08:11:26
728
原创 2024/9/27 The Limitations of Deep Learning in Adversarial Settings读后感
对抗显著图是对抗样本生成中的一个强大工具,它通过揭示模型对输入特征的敏感性,帮助攻击者更精确、更高效地选择扰动方向和大小,从而在最小扰动的前提下达到误导模型的目的。
2024-09-27 22:47:24
787
原创 自己对对抗性样本的实质的理解
深度神经网络的近似性:网络在处理输入数据时确实存在近似误差,这使得小的扰动可能导致预测结果的变化。优化的必要性:通过优化算法,可以针对这些误差进行调整,提高模型的鲁棒性,减少对扰动的敏感性。适应性方案:利用适应性调整方法,可以动态地调整训练数据的分布,以更好地应对模型的局部弱点,从而提高整体性能。你的理解强调了模型处理输入数据时的近似误差和对扰动的敏感性,同时也指出了通过优化算法来改进模型表现的必要性。这些都是深度学习研究中非常重要的方面。
2024-08-17 13:03:13
466
原创 Towards Deep Learning Models Resistant to Adversarial Attacks
探讨了当前对抗攻击防御研究中的挑战,如计算开销、对抗样本的多样性和防御方法的泛化能力等。并提出了未来研究的方向,如开发更高效的防御算法、提升模型的可解释性和透明性等。:重点讨论了几种防御对抗攻击的方法,包括对抗训练、梯度掩蔽和模型集成等。总的来说,这篇论文综述了当前深度学习模型在面对对抗攻击时的脆弱性,并介绍了不同的防御策略及其效果,为未来开发更鲁棒的深度学习模型提供了理论基础和实践指导。:介绍了评估模型对抗攻击鲁棒性的方法和标准,如准确率曲线、失效率和对抗容忍度等。这篇论文的主要内容是关于。
2024-07-06 01:42:44
523
原创 如何应对情绪和培养理性的书
这些书籍提供了不同的视角和方法,帮助你更好地理解和管理自己的情绪,从而培养更加理性的思维方式。这本书提供了一种有效的沟通方式,帮助读者更好地理解和表达自己的情绪,同时也能更好地理解他人的情绪。诺贝尔经济学奖得主丹尼尔·卡尼曼的经典之作,解释了我们在决策过程中如何被情绪和非理性思维所影响。这本书探讨了情绪智商(EQ)的重要性以及如何通过提高EQ来改善个人和职业生活。这本书提供了许多实际的技巧和策略,帮助读者在面对情感创伤时进行自我修复。这本书强调活在当下的重要性,并提供了许多练习来帮助读者更好地管理情绪。
2024-07-01 23:00:06
657
原创 对抗样本与防御方法+所涉及的数学知识和学习方法
总之,对抗样本利用机器学习模型的漏洞,通过引入小的、经过精心设计的扰动来实现,从而导致模型做出错误的预测。理解 softmax 函数、训练损失和 logits 对理解这些攻击如何运作及其防御方法至关重要。这段文本涉及的数学主要集中在机器学习(特别是深度学习)的基础概念和方法上。线性代数向量和矩阵的表示和运算,如神经网络中的权重参数 ( \theta ),输入 ( x ),输出 ( F_\theta(x) ) 等都是向量或矩阵形式。概率论与统计。
2024-06-21 11:06:45
809
原创 温度缩放temperature scaling,以及其在对抗性样本的隐私泄露中的作用
温度缩放是一种用于校准分类模型输出置信度的后处理技术。通过调整 logits 的尺度,它可以使模型的输出概率更好地反映真实的置信度。其优点包括简单高效和在许多实际应用中的有效性,虽然它也有一定的局限性。理解和应用温度缩放可以帮助提升模型在实际应用中的可靠性和可解释性。降低模型的过度自信:对抗性鲁棒模型可能会对其预测结果过度自信,从而增加被攻击者推断出成员身份的风险。通过温度缩放,输出的概率分布可以被校准,减少这种过度自信,使得模型的预测置信度更为合理。提高成员推断攻击的防御能力。
2024-06-21 10:56:51
2795
原创 Adversarial Perturbation Constraint对抗扰动约束
对抗扰动约束是关于在生成对抗样本时施加的限制条件,以确保这些样本能够有效欺骗模型且满足一定的规范。理解和研究这些约束对于提升模型的安全性和鲁棒性具有重要意义。
2024-06-21 10:46:05
733
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅