大模型基础|预训练|有监督微调SFT

现在的大模型在进行预训练时大部分都采用了GPT的预训练任务,即 Next token prediction。

基础概念:

  • Token:在NLP中,一个“token”可以是一个词、一个字或一个标点符号。例如,句子“我爱北京”被切分成三个tokens: “我”, “爱” 和 “北京”。
  • Prediction:预测是指根据模型的当前输入,猜测接下来应该出现的token是什么。

训练

  • 在训练过程中,模型通过大量的文本数据来学习文本之间的模式和结构。
  • 例如,模型会看到成千上万次的“我爱X”这样的模式,其中X可以是各种不同的词。通过这样的训练,模型会学会哪些词最有可能出现在“我爱”之后。

要理解清楚这一训练过程,最主要的就是搞清楚预训练的数据怎么构造,数据怎么喂给模型,模型输出的是什么,以及如何计算loss

这里通过一个完整的例子来介绍一下这个过程,假设现在有一个用来预训练的数据集

你知道什么是预训练吗?

假设经过分词后

你: 9
知道: 3
什么: 6
是: 4
预训练: 2
吗: 1
?: 5

原来的数据变为如下序列,后面补了三个0(假设我们希望最大序列长度是10)

9 3 6 4 2 1 5 0 0 0

预测下一个token就类似于9预测3,93预测6,以此类推,但是如果这样拆成很多个数据段其实比较低效,因此就可以考虑移位来构造数据,即

  • 模型输入X为 9 3 6 4 2 1 5 0 0 0
  • 模型输出targets为 3 6 4 2 1 5 0 0 0 0

这样就可以一次性把整条序列喂给模型,计算一次就包含了6个预测下一个token的损失了。注意这里模型的设计是有讲究的,我们不能让输入看到后面的词(如果看得到的话就没必要进行预测了),也就是“你”在模型内看不到“知道”,“你 知道”在模型内看不到“什么”,这个可以通过注意力机制实现,不是本文的关注点,这里就不展开了。

现在模型的输入的维度为(1,10),第一维为batch_size,然后经过embedding层后变为(1,10,768),这里假设embedding的维度为768。

记住进入transfomer前后数据的维度不会发生变化,把transfomer当作一个黑盒,也就是transformer(X)的维度还是(1,10,768),接下来就是基于它来进行预测了,因为要预测哪个词,词的可能情况就是词表的大小,所以做的就是一个分类任务,预测下一个token是词表中的哪一个(词表中的每一个词当作一个类别)。

为了完成分类任务,需要对transformer的输出做一个映射,映射到跟词表一样大,也就需要定义这样一个线性变换

output_layer = nn.Linear(768, vocab_size, bias=False)

然后logits=output_layer(transformer(X))的维度就是(1,10,vocab_size),接下来就可以计算loss了,具体来说就是计算logits(模型预测)与targets(真实标签)之间的交叉熵损失,同时忽略了填充值对应的损失。

loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=0)

Supervised fine-tuning (SFT)

“有监督微调”意味着使用有标签的数据来调整一个已预训练好的语言模型(LLM),使其更适应某一特定任务。通常LLM的预训练是无监督的,但微调过程往往是有监督的。

当进行有监督微调时,模型权重会根据与真实标签的差异进行调整。通过这个微调过程,模型能够捕捉到标签数据中特定于某一任务的模式和特点。使得模型更加精确,更好地适应某一特定任务。

以一个简单的例子来说,你有一个已经预训练好的LLM。当输入“我不能登录我的账号,我该怎么办?”时,它可能简单地回答:“尝试使用‘忘记密码’功能来重置你的密码。”

这个回答很直接,适用于一般问题,但如果是客服场景,可能就不太合适了。一个好的客服回答应该更有同情心,并且可能不会这么直接,甚至可能包含联系信息或其他细节。这时候,有监督微调就显得非常重要了。

经过有监督微调后,你的模型可以提供更加符合特定指导原则的答案。例如,经过一系列专业的培训示例后,你的模型可以更有同情心地回答客服问题。

接下来我们还是从数据到模型输出,计算loss的步骤来看看SFT的实现原理。

首先还是来看看数据怎么构造,SFT的每一条样本一般由两部分组成,也就是prompt(instruction)+ answer,比如:

  • prompt: 翻译以下句子: What is pretrain
  • answer: 什么是预训练

也就是我们要给模型提供一些类似于问答形式的答案来学习,有了前面预训练的经验后,SFT其实就很好理解的,它本质上也在做next token prediction,只是我们更希望模型关注answer部分的预测,这可以通过生成一个mask向量来屏蔽不希望计算loss的部分,下面就是数据构造的一个示意:做的事情就是拼接prompt和answer,并在answer两侧添加一个开始和结束的符号,算一下prompt/instruction的长度,以及后面需要pad的长度,然后生成一个mask向量,answer部分为1,其他部分为0。

input_id=prompt+[bos]+answer+[eos]
context_length = input_id.index(bos)
mask_position = context_length - 1
pad_len = max_length - len(input_id)
input_id = input_id + [pad] * pad_len
loss_mask = [0]*context_length+[1]*(len(input_id[mask_position+1:])) + [0]*pad_len

构造好输入后,token转为embedding,经过transformer的过程跟之前预训练完全一样,也就是我们又得到了一个维度是(1,10,vocab_size)的输出logits=output_layer(transformer(X)),进一步就可以计算answer部分的loss了,其实就是通过mask把不希望考虑的地方乘以0,保留answer部分loss。

loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0,reduce=False)
loss_mask = loss_mask.view(-1)
loss = torch.sum(loss*loss_mask)/loss_mask.sum()

有了loss,进行反向传播更新模型参数就OK啦。

Reference:Supervised Fine-tuning: customizing LLMs

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在大模型监督训练(SFT)过程中,数据多样性指的是训练数据集中的样本具有丰富的变化和多样的特征。数据多样性是一种衡量训练数据集中多个样本之间差异性的度量。 数据多样性对于SFT的有效训练非常重要。它能够帮助模型学习到更有效的特征表示,从而提高模型的泛化能力和性能。 首先,数据多样性能够促使模型学习到更丰富的特征。如果训练数据集中的样本都非常相似,模型可能会过度拟合这些特定数据,而无法捕捉到更广泛的特征变化。相反,如果训练数据集中包含了各种不同类型和变化幅度的样本,模型将更有可能学习到更通用的特征表示。 其次,数据多样性可以帮助模型更好地应对未见过的数据。如果模型只在单一模式或特定领域的样本上进行训练,它可能无法处理在训练期间未曾见过的样本。通过训练数据集中引入多样性,模型将更具有鲁棒性和泛化能力,能够更好地适应新的、未知的数据。 最后,数据多样性有助于增强模型的鲁棒性。因为在真实应用中,输入数据的多样性变化往往是不可避免的。通过在训练过程中暴露模型于各种样本,模型可以更好地应对各种输入变化,提高模型的鲁棒性和稳定性。 总之,在大模型监督训练中,数据多样性是指训练数据集中样本具有丰富的变化和多样的特征。它对于模型的特征学习、泛化能力和应对未知数据具有重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值