- 博客(1339)
- 资源 (10)
- 收藏
- 关注
原创 部分可观察马尔可夫决策过程
与 MDP 不同,在 POMDP 中,智能体不能直接看到当前状态 (s),而是接收到一个观察 (o)。POMDP 是一种描述决策问题的模型,在这种问题中,决策者(通常称为智能体)无法直接知道系统的真实状态,而是通过观察来推断状态。在 POMDP 中,智能体的策略(policy)是基于信念状态的映射,即从信念 (b) 到动作 (a) 的函数。:在状态 (s) 采取动作 (a) 时获得的即时奖励,即 (R(s, a))。:描述在状态 (s) 采取动作 (a) 后转移到状态 (s’) 的概率,即。
2025-06-04 14:01:36
793
原创 马尔可夫链(Markov Chain)和马尔可夫决策过程(Markov Decision Process, MDP)
(R(s, a, s’)),表示从状态 (s) 采取动作 (a) 转移到 (s’) 时获得的奖励(有时简化为 (R(s, a)))。马尔可夫性质指的是:系统的下一个状态仅依赖于当前状态,而与之前的历史状态无关。:对于不可约、非周期的马尔可夫链,通常存在唯一的平稳分布,且初始分布不影响长期行为。:通过迭代更新 (V(s)) 或 (Q(s, a)),直到收敛到最优值函数。,表示在状态 (s) 采取动作 (a) 后转移到状态 (s’) 的概率。(S):系统可能的所有状态,与马尔可夫链类似。
2025-06-04 13:51:53
684
原创 Kubernetes资源申请沾满但是实际的资源占用并不多,是怎么回事?
K8s报告的"资源不足"是指可分配的资源配额用完了,而不是物理资源用完了。这是K8s确保服务质量和避免资源竞争的保护机制。
2025-05-29 10:05:17
991
原创 K8S查看pod资源占用和物理机器IP对应关系
方法2:显示节点名称和IP地址的对应关系方法3:更清晰的格式化输出这个命令会直接显示节点名称、状态、角色、年龄、版本和内部IP等信息。
2025-05-29 09:51:47
573
原创 .jsx文件和.tsx文件有什么区别
tsx 和 .jsx 是两种用于 React 开发的 JavaScript 文件扩展名,它们的主要区别在于对 TypeScript 的支持以及使用场景。:需要配置 TypeScript 编译器(tsconfig.json),并确保项目支持 TypeScript。:TSX 文件不能直接在纯 JavaScript 项目中使用,需要 TypeScript 环境。:所有 .jsx 文件可以轻松转换为 .tsx,只需添加 TypeScript 类型注解即可。
2025-05-23 20:30:33
765
原创 Ubuntu 22.04上升级Node.js版本
在Ubuntu 22.04上升级Node.js版本有几种方法,推荐使用NVM(Node Version Manager),因为它可以让你轻松管理多个Node.js版本。
2025-05-22 10:10:47
748
原创 发布Chrome浏览器插件的几种方法
创建简单的图标:如果您没有图标,可以使用在线工具(如Canva)快速创建一个写一份清晰的README:详细说明安装步骤和使用方法提醒合规性:提醒用户遵守相关网站的服务条款和数据保护法律更新机制:对于第3种方法,更新时只需要用户重新加载扩展。
2025-05-21 14:05:48
979
原创 go.mod:5: unknown directive: toolchain
Go语言版本较旧,而项目使用了较新版本的Go语言特性。错误信息"unknown directive: toolchain"表明go.mod文件中使用了"toolchain"指令,这是在Go 1.21版本中新引入的特性,但您当前安装的Go版本不支持这个指令。
2025-05-20 21:57:18
456
原创 用k8s部署的服务,为什么要求必须要分配给到根分区,不做其他分区。分区有什么区别吗?
如果您需要额外存储空间,Kubernetes提供了PersistentVolume和PersistentVolumeClaim机制,可以安全地挂载额外存储而不需要使用其他分区。
2025-05-20 11:35:33
222
原创 ubuntu22.04 卸载ESP-IDF
如果您使用了其他自定义安装位置或配置,可能需要根据您的具体情况调整这些步骤。重启终端后,ESP-IDF相关的环境变量和路径应该已完全清除。
2025-05-19 16:30:58
499
原创 项目删除了,为什么vscode中的git还是存在未提交记录,应该怎么删除掉
【代码】项目删除了,为什么vscode中的git还是存在未提交记录,应该怎么删除掉。
2025-05-19 13:48:59
510
原创 VS Code 开启mcp控制本地的redis
由于 MCP 的具体功能不明确(可能是代理、缓存服务或自定义协议),我们假设 MCP 提供了一种机制来管理或代理本地 Redis 实例。:如果涉及 FastAPI 或其他 Python 项目,确保 Python 3.8+ 已安装,并配置好虚拟环境(参考您之前的 FastAPI 配置)。将 README 中的 JSON 配置复制到 VS Code 的 mcp.json 文件中(通常位于项目根目录或 .vscode 文件夹)。如果没有,可能是内部插件或扩展需要安装,请确认您的 MCP 上下文。
2025-05-18 14:25:48
1149
原创 使用vscode做python项目fastapi的开发
下载地址:https://www.python.org/downloads/: 检查 launch.json 配置是否正确,确保 main:app 与代码中的文件名和 FastAPI 实例名称一致。访问 http://127.0.0.1:8000/docs 查看自动生成的 Swagger UI 文档。:下载并安装 VS Code:https://code.visualstudio.com/:访问 http://127.0.0.1:8000/docs 测试 API 端点。
2025-05-18 14:17:19
927
原创 ubuntu22.04卸载vscode
如果你解压了 VSCode 的 .tar.gz 文件,通常位于自定义目录(如 ~/vscode 或 /opt/vscode)。:如果你需要保留 VSCode 的设置或扩展,在删除 ~/.config/Code 或 ~/.vscode 前,备份这些文件夹。删除相关行,然后运行 source ~/.bashrc 或 source ~/.zshrc。如果返回空或 /usr/bin/code 不存在,说明已卸载。如果输出显示 code,说明是通过 APT 安装的。方法 2:通过 APT 卸载 VSCode。
2025-05-16 22:32:22
764
原创 在 Visual Studio Code (VSCode) 中配置 MCP(Model Context Protocol)
探索更多服务器:https://github.com/modelcontextprotocol。创建 .vscode/mcp.json 文件。配置 MCP Server 的步骤。验证和使用 MCP Server。推荐的 MCP Server。为例,介绍如何配置。
2025-05-16 22:27:36
2548
1
原创 VSCode + Cline AI辅助编程完全指南
自动生成和编辑代码理解和解释复杂代码回答关于代码架构和逻辑的问题执行和修复测试管理Git工作流创建和修改项目文件这个插件让Claude AI的强大能力直接集成到你的编码环境中,大幅提升开发效率。
2025-05-16 21:38:09
1516
1
原创 6.5 行业特定应用:金融、医疗、制造等行业的定制化解决方案
大语言模型(LLM)与智能代理(Agent)的结合,通过语义分析、任务自动化和合规管理,为这些行业提供高效、精准的定制化解决方案。传统诊断耗时30分钟/病例,误诊率10%。以下三个案例分别从金融、医疗和制造行业,深入展示大模型与Agent的定制化应用,特别对金融案例进行大幅扩展,细化背景、挑战、解决方案、技术细节、实施步骤、成果、经验教训和未来启示。本节将围绕金融、医疗、制造行业的核心场景,结合技术架构、实施方法和深入案例,为企业提供系统化实践指南,特别聚焦金融行业的欺诈检测与合规需求,展示深度应用成果。
2025-05-06 21:18:15
961
原创 6.4 内部协作与知识管理:智能助手与企业知识库的集成
而基于大语言模型(LLM)与智能代理(Agent)的技术,通过智能助手与企业知识库的深度集成,为企业提供了动态、实时、个性化的知识获取与协作支持。本节将深入探讨如何利用大模型与Agent技术优化内部协作与知识管理,涵盖技术实现、应用场景、案例分析、挑战与最佳实践,为企业提供可落地的实践指南。知识库更新周期6个月,50%内容过时(例如,2024年市场数据)。本节内容从技术基础、应用场景、案例分析到挑战与展望,系统阐述了大模型与Agent在内部协作与知识管理中的实践方法,为企业提供了详细、可操作的指导。
2025-04-29 21:28:05
935
原创 6.3 数据分析与决策支持:数据洞察生成与决策辅助系统
而大模型(LLM)和智能Agent的结合,为企业提供了强大的数据洞察生成和实时决策支持能力。为了满足您对《6.3 数据分析与决策支持:数据洞察生成与决策辅助系统》中案例更详细的要求,以下是对零售行业案例(销售预测与库存优化)的进一步扩展,补充了技术实现细节、具体工作流程、代码示例、Prompt模板、数据可视化建议以及更细致的成果分析。撰写《6.3 数据分析与决策支持:数据洞察生成与决策辅助系统》需要以专业的视角,结合大模型与智能Agent的实际应用,详细阐述如何通过这些技术实现数据洞察生成和决策辅助。
2025-04-29 13:33:31
1035
原创 6.2 内容生成与营销:个性化内容创作与营销策略优化
基于大语言模型(LLM)与智能代理(Agent)的技术为企业提供了全新的解决方案,能够实现高效、精准、规模化的内容生成与营销策略优化。平台目标市场包括北美(美国、加拿大)、欧洲(德国、法国、西班牙、英国)和亚洲(日本、韩国、中国、印度)。大模型(如GPT、Claude、Qwen2.5-Max等)基于其强大的自然语言生成能力,能够快速生成符合语法、语义和风格要求的内容。智能代理通过感知、规划、决策和执行能力,将大模型的生成能力与外部工具、数据源和业务流程无缝集成,优化营销活动的执行效果。
2025-04-26 19:44:00
818
原创 6.1 客户服务:智能客服与自动化支持系统的构建
基于大语言模型(LLM)和智能代理(Agent)的技术为构建智能客服与自动化支持系统提供了强大的支持,不仅提升了服务效率,还优化了用户体验。智能客服系统能够通过自然语言处理(NLP)、上下文理解和工具调用,实现多轮对话、问题解答、任务自动化等功能,显著提升服务效率与质量。目标是自动化处理80%的常见问题,支持多语言(英语、汉语、西班牙语、阿拉伯语),并在高峰期(如黑色星期五)处理10倍流量。某全球电信运营商每日处理30万次咨询(套餐查询、账单解释、技术支持),覆盖多渠道(网页、App、电话、X平台)。
2025-04-26 19:33:38
955
原创 5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
尽管存在文档和复杂性方面的挑战,SK的企业级特性和与Microsoft生态的深度集成使其成为构建智能应用的理想选择。它支持C#、Python和Java等多种编程语言,提供了轻量级、模块化的框架,用于构建智能代理(Agent)并实现AI与传统代码的协同工作。SK的核心目标是通过提供统一的AI编排层,简化企业在现有系统上引入LLM的复杂性,同时确保企业级可靠性、安全性和可扩展性。记忆机制通过与向量数据库的集成,实现了高效的检索增强生成(RAG),使LLM能够基于企业数据生成更准确的响应。
2025-04-25 21:40:14
717
原创 第5.5章:ModelScope-Agent:支持多种API无缝集成的开源框架
ModelScope-Agent不仅提供统一的模型交互接口,还通过内置工具生态系统、自定义工具注册机制和多模态知识检索功能,为企业提供了从原型设计到生产部署的全流程支持。ModelScope-Agent作为一款开源的智能代理框架,以其模块化架构、强大的API集成能力和活跃的社区支持,在企业AI应用中展现出巨大潜力。ModelScope-Agent,由阿里巴巴旗下ModelScope社区开发,是一个开源的、模块化的框架,旨在帮助开发者基于大型语言模型快速构建功能强大、灵活性高的智能代理。
2025-04-25 21:30:44
1071
原创 5.4 AgentLite:轻量级库,便于构建任务导向的LLM Agent系统
AgentLite 的核心设计理念是将 LLM 的推理能力与任务执行逻辑解耦,提供简单易用的接口,便于开发者在企业场景中实现定制化的 Agent 系统。为了深入探讨 AgentLite 在企业场景中的应用案例,我们将聚焦于三个具体的业务场景,详细分析如何利用 AgentLite 的轻量级特性、模块化架构和任务导向设计来解决实际问题。它通过简化的 API 和模块化组件,降低了 LLM Agent 开发的复杂性,同时保留了足够的灵活性以支持多样化的应用场景。AgentLite 支持自定义工具的集成。
2025-04-25 21:11:12
738
原创 5.3 Dify:低代码平台,适用于企业快速部署合规AI应用
其模块化设计、强大的RAG引擎、灵活的Agent框架和生产级安全机制,支持企业从原型验证到大规模部署的全生命周期管理,广泛应用于客服自动化、金融分析、医疗诊断和供应链优化等领域。它通过Python(后端)和TypeScript(前端)实现,支持云端部署(AWS、Azure)和本地部署(Docker、Kubernetes)。:Dask分布式预测(吞吐量提升40%),连接池(HikariCP,1000并发),批量API调用(减少60%网络I/O)。Dify内置可观测性工具,实时监控AI应用性能和可靠性。
2025-04-25 20:51:40
1037
原创 5.2 AutoGen:支持多Agent对话的开源框架,适合自动化任务
本章基于最新研究,深入探讨AutoGen的定义、核心功能、实现技术、优化策略、行业应用及未来趋势,重点分析其在多Agent协作和自动化任务中的优势与实践。, AutoGen提供了一个统一的多Agent对话框架,允许开发者创建可自定义、可对话的Agent,这些Agent能够集成LLM、外部工具和人类输入,完成从简单查询到复杂工作流的各种任务。是一个开源框架,专为构建基于大型语言模型(LLM)的多Agent系统而设计,通过支持Agent之间的自然语言对话和工具调用,实现任务的自动化和协作。
2025-04-25 20:39:03
1261
原创 5.1 LangChain:功能强大的框架,适用于构建复杂的LLM驱动应用
LangChain通过简化提示词管理、记忆机制、工具调用和外部系统集成,支持从简单聊天机器人到复杂多智能体系统的开发,广泛应用于客服自动化、金融分析、供应链优化和医疗诊断等领域。本章基于最新研究,深入探讨LangChain的定义、核心功能、实现技术、优化策略、行业应用及未来趋势,重点分析其在复杂LLM应用中的优势与实践。其核心目标是简化LLM应用生命周期,包括开发、调试、优化和部署。是一个开源框架,专为开发基于LLM的应用而设计,通过提供模块化组件和抽象层,增强LLM的定制化、上下文感知和外部集成能力。
2025-04-25 13:25:24
659
原创 4.4 记忆机制与上下文管理:短期与长期记忆的设计与应用
(Long-Term Memory, LTM)支持Agent存储、检索和利用信息,短期记忆处理即时任务的上下文,长期记忆支持跨会话学习和个性化服务。本章基于最新研究,深入探讨短期与长期记忆的设计原则、实现技术、优化策略、行业应用及未来趋势,重点分析如何通过高效记忆机制提升Agent性能。记忆机制与上下文管理通过短期和长期记忆设计,为Agent系统提供了强大的信息存储和检索能力。是指Agent动态维护和利用相关信息的过程,通过整合短期和长期记忆,确保任务执行的连贯性和准确性。
2025-04-24 21:58:56
690
原创 4.3 工具调用与外部系统集成:API调用、MCP(模型上下文协议)、A2A、数据库查询与信息检索的实现
提示词工程通过精心设计的自然语言提示词(Prompts),引导大型语言模型(Large Language Models, LLMs)生成准确、相关的输出,而任务建模通过结构化分析任务目标、输入、输出及子任务,确保提示词能够有效反映任务需求。提示词可以是简单的查询(如“总结这篇文章”),也可以是复杂的指令序列(如“逐步分析财务报表,提炼三点关键指标”),其核心目标是利用LLM的预训练知识和推理能力,完成特定任务而无需额外微调。CoT的核心是将任务拆解为子任务,每个子任务由LLM独立处理,最终得出答案。
2025-04-24 21:52:45
1053
原创 4.2 Prompt工程与任务建模:高效提示词设计与任务拆解方法
提示词工程通过精心设计的自然语言提示词(Prompts),引导大型语言模型(Large Language Models, LLMs)生成准确、相关的输出,而任务建模通过结构化分析任务目标、输入、输出及子任务,确保提示词能够有效反映任务需求。提示词可以是简单的查询(如“总结这篇文章”),也可以是复杂的指令序列(如“逐步分析财务报表,提炼三点关键指标”),其核心目标是利用LLM的预训练知识和推理能力,完成特定任务而无需额外微调。CoT的核心是将任务拆解为子任务,每个子任务由LLM独立处理,最终得出答案。
2025-04-24 21:40:53
1185
原创 4.1 融合架构设计:LLM与Agent的协同工作模型
这种协同工作模型利用LLM的语言理解、推理和生成能力,为Agent提供强大的知识支持,而Agent通过感知、决策和执行功能,将LLM的智能转化为实际行动。然而,模型不稳定性(如幻觉、过度自信)、总结不专业(如信息冗余、准确性不足)以及复杂任务协调的挑战(如多Agent冲突)限制了其效能。是一种融合架构,其中LLM作为核心推理引擎,提供语言理解、知识推理和生成能力,而Agent通过感知环境、制定决策和执行行动,将LLM的输出转化为实际结果。:查询Agent和推荐Agent协作,门控器根据问题类型选择。
2025-04-24 21:20:20
835
原创 3.4 Agent的生命周期管理:任务分解、状态管理与反馈机制
智能代理(Agent)的生命周期管理是其在复杂环境中高效运行的核心保障。Agent的生命周期涵盖了从任务接收到结果交付的整个过程,涉及任务分解(Task Decomposition)、状态管理(State Management)和反馈机制(Feedback Mechanisms)三大关键环节。这些环节共同确保Agent能够将复杂任务分解为可执行的子任务,跟踪任务执行的状态,并在运行中持续优化行为。3.4.1 任务分解(Task Decomposition)定义与概述任务分解是指将复杂任务拆分为一系列较小的、
2025-04-23 21:57:27
663
原创 3.3 技术框架:LangChain、ReAct、Memory与Tool Integration
LangChain、ReAct、Memory和Tool Integration是2025年构建智能代理的核心技术框架,共同支撑了Agent在感知、推理、行动和学习方面的能力。(Reasoning and Acting)是一种AI代理框架,通过将推理(Reasoning)和行动(Acting)交替进行,使代理能够处理需要多步骤推理和外部工具交互的复杂任务。本章将深入探讨这些技术框架的定义、核心组件、实现技术、行业应用及其在2025年的最新发展趋势,结合具体案例和分析,为读者提供全面的理论指导和实践洞察。
2025-04-23 21:49:24
1520
原创 3.2 Agent核心能力:感知、规划、决策与执行
这些能力共同构成了Agent的智能框架,使其能够从感知环境开始,制定行动计划,做出合理决策,并通过具体行动影响环境。本文将系统且专业地探讨这四大核心能力的定义、作用、关键技术、应用场景以及它们之间的协同关系,并通过具体示例和行业案例加以阐释,旨在为读者提供深入的理论指导和实践洞察。例如,在自动驾驶中,车辆感知道路状况,规划行驶路径,决策变道或减速,执行转向或刹车,并通过感知反馈调整策略,形成动态适应能力。决策能力使Agent能够在动态、不确定环境中快速响应,选出最优或次优的行动方案,是智能行为的关键环节。
2025-04-23 21:26:47
1441
原创 3.1 Agent定义与分类:自主Agent、协作Agent与混合Agent的特点
特别是在大模型(Large Models)的赋能下,Agent的功能得到了显著增强,其应用范围从简单的自动化任务扩展到了复杂的决策支持和多实体协作场景。本节将深入探讨Agent的定义与分类,重点分析自主Agent、协作Agent和混合Agent的特点,并通过具体的应用场景和示例阐释其在企业实践中的价值。本节将首先明确Agent的定义及其基本构成,然后分别详细介绍自主Agent、协作Agent和混合Agent的特性、优势及其适用场景,最后通过比较与总结为企业应用实践提供理论指导。
2025-04-23 21:04:30
666
原创 2.4 持续学习与自适应:模型更新机制与在线学习策略
在动态的业务环境中,数据分布、用户需求和外部环境不断变化,模型必须具备持续学习和自适应能力,以保持性能和适用性。: 未来,大模型将通过持续学习和在线学习实现真正的“终身学习”,从被动响应转变为主动适应。: 持续学习是一种机器学习范式,旨在使模型在面对新数据或任务时,动态更新参数,保持对旧知识的记忆,同时适应新信息。模型更新机制是大模型持续学习的基础,通过定期或实时调整参数,保持模型的性能和适应性。在线学习是大模型自适应的核心技术,使模型能够实时处理流式数据,动态更新参数。
2025-04-23 14:20:20
922
citycode.sql
2019-07-02
xhell和Xftp学校版本
2020-10-21
navicat for sqlite安装文件
2019-01-15
geexekscore.zip
2020-06-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人