- 博客(1214)
- 资源 (10)
- 收藏
- 关注
原创 设计一个流程来生成测试模型安全性的问题以及验证模型是否安全
首先,明确什么样的响应被视为安全或不安全。拒绝回答有害问题、提供免责声明、引导用户寻求专业帮助等。提供有害内容、泄露隐私信息、传播错误信息等。
2025-01-14 21:54:46 916
原创 ollama运行怎么使用8张A10的GPU卡
如果你需要进行多 GPU 加速(例如数据并行),需要确保 Ollama 和你的模型支持分布式计算。如果 Ollama 本身没有直接支持多 GPU,你可能需要自行调整代码或配置文件来启用该功能。如果问题仍然存在,可能需要查阅 Ollama 的文档,确认它是否支持多 GPU 并行计算,或对性能进行进一步的优化。来监控每张卡的使用情况。如果只看到一个 GPU 在工作,可能是配置不正确,或者模型没有正确地并行化到多个 GPU。如果你想指定使用特定的 GPU,可以通过设置。,它应该会自动识别并使用你指定的 GPU。
2025-01-14 09:37:27 425
原创 `ollama` 后台运行命令
nohup方法适用于简单的后台进程运行,但要避免标准输入问题,可以使用来避免它。screen或tmux适用于需要会话管理的情况,能够分离和恢复会话。systemd适用于系统级的进程管理,特别适合需要长时间运行且在系统启动时自动启动的进程。
2025-01-13 18:16:50 696
原创 检测模型安全的更高级的方法
将攻击指令隐藏在输入的非显性部分,例如文本注释、图片元数据等,测试模型能否正确识别并拒绝这些隐蔽指令。利用模型对上下文或外部知识库的依赖,通过操纵这些外部依赖来引导模型输出敏感或错误的信息。通过设计复杂的逻辑问题或任务,测试模型的推理能力是否会暴露逻辑缺陷或输出不安全的内容。利用模型训练数据的分布差异,通过输入接近边界分布的数据,诱导模型生成不安全输出。利用从类似模型中学到的攻击策略,对目标模型发起攻击,测试其防御泛化能力。利用模型的自适应能力,通过一部分合法输入逐步引导模型接受恶意输入。
2025-01-13 16:33:49 778
原创 测试模型安全的一些高级手段
通过向输入中添加大量冗余信息或无关内容,使模型的计算资源过载,从而导致错误输出或性能下降。利用多模态数据(如文本、图像、语音等)的组合攻击模型,测试其在处理多模态信息时的防御能力。通过破坏输入的语境,测试模型是否能正确理解文本的实际意图,并防止错误或危险的输出。通过控制输入数据的时间分布,测试模型的响应速度和鲁棒性,寻找时间相关的漏洞。通过超大输入或递归式调用,消耗模型的计算资源,导致其崩溃或输出异常内容。通过修改模型的训练数据或干扰模型的训练过程,使其在特定输入下表现异常。
2025-01-13 16:27:37 647
原创 测试模型安全的手段
通过逐步引导的方式,使模型在一开始输出正常的内容,然后在后续对话中逐渐放松防守机制,最终诱导其生成敏感内容。通过在输入中插入随机字符、无意义噪声或异常符号,使模型难以正确解析输入,进而诱导其生成异常或不安全的输出。通过使用模糊或弱语义表达,使攻击内容看似无害,实际却包含敏感意图,从而测试模型对语义模糊性的识别能力。通过在输入后添加特定的后缀内容(如随机字符串、特殊指令等),尝试混淆模型的判断逻辑或触发非预期行为。通过精心设计的输入使模型绕过内置的安全机制,执行被明确禁止的任务。
2025-01-13 16:26:47 907
原创 使用 `llama3.2-vision:90b` 来实现图像理解应用
使用来实现图像理解应用是可行的,前提是该模型能够处理图像输入并返回相关的理解结果。是 Llama 系列的一种视觉模型,它可以通过图片输入来生成响应。
2025-01-10 21:35:41 575
原创 搭建一个fastapi的项目,调用ollama服务
确保在需要调用 Ollama 服务时,有正确的 API 密钥和配置。如果 Ollama 服务本身也需要容器化,你可以在。通过这个结构和 Docker Compose 部署方式,项目分层清晰,确保了每个模块的职责单一。负责文件操作,并且整个项目通过 Docker Compose 可以非常方便地部署和管理。这会启动 FastAPI 应用,并且在浏览器访问。请求,上传图像文件,并查看返回的。处理 FastAPI 的路由,负责与 Ollama 的交互,文件中添加相应的服务配置。
2025-01-10 21:13:30 811
原创 向量检索的算法-精确向量检索
精确向量检索方法通常能够提供更高的准确性,确保返回与查询向量最相似的点。然而,精确检索通常计算开销较大,尤其在面对大规模和高维数据时。在选择精确检索方法时,需要根据数据的维度、大小以及应用需求来权衡不同算法的优缺点。
2025-01-10 13:42:43 711
原创 向量检索的算法-乘积量化
乘积量化是一种高效的向量量化技术,通过将高维向量分解为多个低维子向量并对其进行量化,从而实现了对大规模数据集的压缩和加速检索。尽管其可能引入一定的误差,但通过合理的设计和优化,乘积量化能够在存储和计算效率之间实现有效的平衡,是高维向量检索中非常重要的一种技术。
2025-01-10 13:35:26 490
原创 向量检索的算法-局部敏感哈希
局部敏感哈希(LSH)通过设计合适的哈希函数,使得相似的数据点在高维空间中有更高的概率被映射到相同的哈希桶,从而加速了近似最近邻的搜索。LSH 适用于大规模、高维数据集,尤其在图像检索、文本检索和推荐系统等领域有着广泛的应用。尽管 LSH 具有较好的查询效率,但其性能仍然依赖于哈希函数的设计和哈希冲突的处理。
2025-01-10 13:30:03 770
原创 向量检索的算法-分层可导航小世界
HNSW 是一种高效的近似最近邻搜索算法,尤其在高维空间和大规模数据集上表现出色。它通过分层的小世界网络结构,结合跳跃式导航策略,优化了查询速度和内存使用。虽然其构建和查询过程依赖于一些参数的调整,但其高效性使得它成为当前最常用的 ANN 搜索算法之一。
2025-01-10 13:25:27 834
原创 在 Ubuntu 22.04 上从 Wayland 切换到 X11的详细步骤
在 Ubuntu 22.04 上从切换到,步骤其实很简单,主要是在登录界面进行选择。
2025-01-08 13:50:29 605
原创 在 Ubuntu 22.04 上从 Wayland 切换到 X11
不会有大的影响:大部分常见应用(如浏览器、办公软件等)都能在 X11 下正常运行。可能的性能差异:某些旧硬件和显卡在 X11 下表现更好,而新硬件可能会在 Wayland 下表现更佳。桌面环境和多显示器支持:桌面环境和窗口管理功能大体相似,但 X11 可能在某些显示设置上需要更多的手动配置。安全性和隐私问题:Wayland 提供更好的安全性,如果你特别关注安全性,切换到 X11 可能会减少某些安全优势。
2025-01-08 13:44:38 977
原创 X11 与 Wayland 的区别,腾讯会议为什么不支持Wayland
会是最直接的解决方法。因为 X11 已经支持腾讯会议的所有功能,包括屏幕共享。如果你的桌面环境默认启用了 Wayland,可以在登录时选择 “Ubuntu on Xorg” 来切换到 X11。都是 Linux 系统中使用的显示服务器协议,但它们的架构和设计理念有所不同。
2025-01-08 13:38:17 990
原创 ubuntu22.04 的录屏软件有哪些?
根据你的需求选择合适的软件。如果你主要做直播,OBS Studio 是最推荐的选择。如果只需要简单的录屏,Kazam 或 SimpleScreenRecorder 可能会更加适合。
2025-01-08 13:32:58 1281
原创 dockerfile 安装 Python 依赖,修改为国内的镜像源
要加速过程并使用国内镜像源,可以将国内镜像源添加到pip命令中。你可以在Dockerfile中修改pip安装的部分,指定国内镜像源进行安装。以下是修改后的Dockerfile。
2024-12-30 20:36:44 589
原创 两台ubuntu的ECS机器共享一个存储
NFS是一种高效的方式,适合 Linux 之间共享文件。Samba更适合 Linux 和 Windows 之间的文件共享。SSH 文件传输适合偶尔传输文件,不需要持续共享。你可以根据需要选择适合的方式进行配置。如果你只是要在两台 Ubuntu 机器之间共享文件,使用NFS会是一个很好的选择。
2024-12-30 13:37:58 933
原创 离线环境下通过docker安装redis镜像
通过和的方式,你可以在离线环境中加载 Docker 镜像。只需要在有网络连接的机器上下载镜像,保存为 tar 文件并传输到目标机器,然后加载并运行镜像。这样可以绕过网络不通的问题,确保你能够使用需要的 Docker 镜像。
2024-12-30 13:10:09 379
原创 You might be seeing this error because you‘re using the wrong Compose file version.
如果问题仍然存在,可以考虑更新 Docker Compose 到最新版本,以便支持更多的功能和文件版本。否则,如果是旧版本的 Docker Compose(V1),你需要使用受支持的。首先,你可以确认一下 Docker Compose 的版本,查看是否使用的是支持。如果你使用的是较新的 Docker Compose 版本(V2),你可以直接省略。文件中使用的是一个受支持的版本。如果你使用的是 Docker Compose V2(文件,确保指定一个支持的版本,比如。命令),你可以直接省略。
2024-12-30 11:19:49 470
原创 国产信创机器安装torch,链接torch超时问题
你看到的错误信息表示pip在尝试连接pypi.org下载torch包时发生了连接超时(通常这意味着你的系统在尝试与 Python 包索引(PyPI)服务器通信时出现了网络问题。具体来说,这些警告是因为pip在多次尝试连接时超时。
2024-12-29 11:20:43 454
原创 ssh免密码登陆配置
ssh命令本身不支持直接在命令中带上密码,出于安全考虑,SSH 协议不允许将密码明文写在命令中。直接在命令行中输入密码是一种不推荐的做法,因为它会暴露密码,增加安全风险。
2024-12-29 11:04:49 264
原创 浏览器怎么设置使用ipv4而不使用ipv6
禁用IPv6是最常见且最直接的方法。修改浏览器设置和使用插件也是可行的,但需要根据具体浏览器选择适当的方法。禁用IPv6后,浏览器会回退到使用IPv4进行网络请求。如果你发现禁用IPv6后浏览器访问速度提高,可以确定问题确实与IPv6配置有关。
2024-12-25 15:53:23 556
原创 网络访问静态网页慢的排查和检测的网站
浏览器开发者工具和是最常用的工具,特别适合检查网页加载过程中的性能瓶颈。Pingdom和GTmetrix提供易用的性能测试平台,适合快速查看页面的整体性能和资源加载情况。Curl和Wireshark更适合命令行分析或需要抓包的深入网络分析。这些工具可以帮助你识别静态网页访问过程中每个资源的加载时间,帮助定位性能瓶颈。
2024-12-25 13:15:18 842
原创 离线环境下安装Ollama
准备文件:在有外网的环境中下载并传输等相关文件。修改脚本:修改安装脚本中的curl下载命令,将其指向本地文件路径。执行安装:在离线环境中执行修改后的安装脚本。手动启动:如果不使用systemd,可以手动启动 Ollama 服务。检查安装:确认 Ollama 是否成功安装并启动。通过这些步骤,你可以在离线环境中成功安装和运行 Ollama。如果有任何问题,随时可以咨询!
2024-12-24 13:48:56 666
原创 多模态大模型有哪些好用的
文本和图像的联合任务:GPT-4是当前最为通用和强大的选择,特别适合文本生成、对话、以及一些简单的图像理解任务。CLIP是专注于图像与文本的对齐任务,适合图像分类和检索任务。生成图像:DALL·E 2是最强大的图像生成模型之一,能够根据文本描述生成高质量的图像。视频和图像联合任务:Flamingo和PaLM-E都是非常强大的跨模态模型,适合需要视觉和语言理解的场景。视觉推理:BLIP-2在视觉-语言推理方面表现优秀,适合图像描述和生成任务。最终选择哪个模型取决于你具体的应用场景。
2024-12-23 21:32:40 892
原创 sklearn 不再维护的问题
主要问题是中使用了已弃用的sklearn包。通过将其替换为,您应该能够解决安装过程中遇到的错误。如果在替换后仍然遇到问题,请确保所有依赖包都是最新的,并且彼此兼容。如果有任何进一步的问题,请随时提问!
2024-12-15 19:42:25 529
原创 milvus 支持向量化索引的方法
IVF_FLAT:倒排索引,适用于精确查询。IVF_PQ:结合产品量化和倒排索引,适合大规模数据和近似查询。HNSW:基于图的近似最近邻算法,适用于高维数据和大规模查询。PQ:通过量化减少存储需求,适用于大规模数据。RNSG:优化版的HNSW,提升查询效率。FLAT:暴力搜索,适用于小数据集和精确查询。选择合适的索引方法取决于数据的规模、查询频率以及对精度和性能的需求。
2024-12-15 19:41:46 280
原创 milvus 支持向量化索引的方法
IVF_FLAT:倒排索引,适用于精确查询。IVF_PQ:结合产品量化和倒排索引,适合大规模数据和近似查询。HNSW:基于图的近似最近邻算法,适用于高维数据和大规模查询。PQ:通过量化减少存储需求,适用于大规模数据。RNSG:优化版的HNSW,提升查询效率。FLAT:暴力搜索,适用于小数据集和精确查询。选择合适的索引方法取决于数据的规模、查询频率以及对精度和性能的需求。
2024-12-15 16:25:40 650
原创 Dijkstra 算法 是什么?
Dijkstra 算法是一种经典的最短路径算法,用于在图(有向或无向图)中找到从起点到其他所有节点的最短路径。它以广度优先搜索的方式,逐步扩展到目标节点,确保计算出的路径是最短的。如果需要输出路径,可以在更新距离表时记录每个节点的前驱节点,最后从目标节点回溯到起点。如果需要更详细的代码示例或具体实现,可以进一步探讨!
2024-12-06 15:30:14 556
原创 A* 算法 是什么?
A*(A-star)算法是一种启发式搜索算法,用于在图或网格中找到从起点到目标的最短路径。它被广泛用于路径规划问题,例如导航、游戏开发中的角色移动,以及机器人路径规划。1. A算法的基本概念。
2024-12-06 15:04:14 1614
原创 什么是思维树,在Agent中起到什么作用
思维树(Tree of Thoughts, ToT)是一种问题求解和推理的结构化方法,尤其适合在人工智能代理(Agent)中进行复杂决策和多步推理任务。它通过模拟人类的思维过程,将问题分解为多个分支和层次,逐步探索可能的解决方案,最终选取最优路径。结构:核心思想:思维树在 Agent 中起到以下几个核心作用:问题分解:状态表示:路径评估:搜索策略:回溯优化:多步推理 Agent:复杂决策 Agent:知识问答系统:游戏 Agent:思维树是 Agent 中一种非常重要的工具,能够有效增强多步推理、复杂决策和
2024-12-02 16:23:24 348
原创 android-studio开发第一个项目,并在设备上调试
在 Android Studio 中创建一个新项目。设计用户界面并编写代码。配置设备(真实设备或虚拟设备)。在设备上运行并调试应用。查看调试输出并进行问题排查。修改代码后重新运行。生成 APK 并部署到设备上。通过这些步骤,你应该能够顺利开发并在设备上调试你的第一个 Android 应用。
2024-11-30 19:01:32 1911
原创 android-studio 下载并安装
下载并解压 Android Studio将 Android Studio 移动到/opt创建桌面快捷方式配置 Android SDK 和其他开发工具。
2024-11-30 18:55:32 987
原创 Milvus的索引类型
Milvus 提供了多种索引类型,以应对不同的应用场景和需求。数据规模:大数据量时,HNSW 和 IVF 索引表现更好。查询精度:HNSW 索引通常提供较高的查询精度。存储和计算开销:PQ 索引适合存储和计算受限的场景。查询速度 vs. 精度:根据需求选择合适的精度和性能平衡(如 IVF 和 HNSW 的结合)。正确选择索引类型将帮助你在大规模向量检索中优化性能。
2024-11-30 11:04:27 1802
原创 vllm部署模型的参数
这个命令在配置上看起来是正确的,前提是你有 8 张 GPU,显存足够,并且已经确保硬件和软件环境支持这些设置。请注意检查显存是否足够,特别是与输入序列长度和张量并行化相关的部分。确保系统有足够的交换空间和 CPU 内存可用,以防万一模型需要更多的资源。
2024-11-30 10:32:24 793
xhell和Xftp学校版本
2020-10-21
geexekscore.zip
2020-06-12
citycode.sql
2019-07-02
navicat for sqlite安装文件
2019-01-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人