- 博客(1316)
- 资源 (10)
- 收藏
- 关注
原创 6.2 内容生成与营销:个性化内容创作与营销策略优化
基于大语言模型(LLM)与智能代理(Agent)的技术为企业提供了全新的解决方案,能够实现高效、精准、规模化的内容生成与营销策略优化。平台目标市场包括北美(美国、加拿大)、欧洲(德国、法国、西班牙、英国)和亚洲(日本、韩国、中国、印度)。大模型(如GPT、Claude、Qwen2.5-Max等)基于其强大的自然语言生成能力,能够快速生成符合语法、语义和风格要求的内容。智能代理通过感知、规划、决策和执行能力,将大模型的生成能力与外部工具、数据源和业务流程无缝集成,优化营销活动的执行效果。
2025-04-26 19:44:00
419
原创 6.1 客户服务:智能客服与自动化支持系统的构建
基于大语言模型(LLM)和智能代理(Agent)的技术为构建智能客服与自动化支持系统提供了强大的支持,不仅提升了服务效率,还优化了用户体验。智能客服系统能够通过自然语言处理(NLP)、上下文理解和工具调用,实现多轮对话、问题解答、任务自动化等功能,显著提升服务效率与质量。目标是自动化处理80%的常见问题,支持多语言(英语、汉语、西班牙语、阿拉伯语),并在高峰期(如黑色星期五)处理10倍流量。某全球电信运营商每日处理30万次咨询(套餐查询、账单解释、技术支持),覆盖多渠道(网页、App、电话、X平台)。
2025-04-26 19:33:38
507
原创 5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
尽管存在文档和复杂性方面的挑战,SK的企业级特性和与Microsoft生态的深度集成使其成为构建智能应用的理想选择。它支持C#、Python和Java等多种编程语言,提供了轻量级、模块化的框架,用于构建智能代理(Agent)并实现AI与传统代码的协同工作。SK的核心目标是通过提供统一的AI编排层,简化企业在现有系统上引入LLM的复杂性,同时确保企业级可靠性、安全性和可扩展性。记忆机制通过与向量数据库的集成,实现了高效的检索增强生成(RAG),使LLM能够基于企业数据生成更准确的响应。
2025-04-25 21:40:14
551
原创 第5.5章:ModelScope-Agent:支持多种API无缝集成的开源框架
ModelScope-Agent不仅提供统一的模型交互接口,还通过内置工具生态系统、自定义工具注册机制和多模态知识检索功能,为企业提供了从原型设计到生产部署的全流程支持。ModelScope-Agent作为一款开源的智能代理框架,以其模块化架构、强大的API集成能力和活跃的社区支持,在企业AI应用中展现出巨大潜力。ModelScope-Agent,由阿里巴巴旗下ModelScope社区开发,是一个开源的、模块化的框架,旨在帮助开发者基于大型语言模型快速构建功能强大、灵活性高的智能代理。
2025-04-25 21:30:44
574
原创 5.4 AgentLite:轻量级库,便于构建任务导向的LLM Agent系统
AgentLite 的核心设计理念是将 LLM 的推理能力与任务执行逻辑解耦,提供简单易用的接口,便于开发者在企业场景中实现定制化的 Agent 系统。为了深入探讨 AgentLite 在企业场景中的应用案例,我们将聚焦于三个具体的业务场景,详细分析如何利用 AgentLite 的轻量级特性、模块化架构和任务导向设计来解决实际问题。它通过简化的 API 和模块化组件,降低了 LLM Agent 开发的复杂性,同时保留了足够的灵活性以支持多样化的应用场景。AgentLite 支持自定义工具的集成。
2025-04-25 21:11:12
612
原创 5.3 Dify:低代码平台,适用于企业快速部署合规AI应用
其模块化设计、强大的RAG引擎、灵活的Agent框架和生产级安全机制,支持企业从原型验证到大规模部署的全生命周期管理,广泛应用于客服自动化、金融分析、医疗诊断和供应链优化等领域。它通过Python(后端)和TypeScript(前端)实现,支持云端部署(AWS、Azure)和本地部署(Docker、Kubernetes)。:Dask分布式预测(吞吐量提升40%),连接池(HikariCP,1000并发),批量API调用(减少60%网络I/O)。Dify内置可观测性工具,实时监控AI应用性能和可靠性。
2025-04-25 20:51:40
792
原创 5.2 AutoGen:支持多Agent对话的开源框架,适合自动化任务
本章基于最新研究,深入探讨AutoGen的定义、核心功能、实现技术、优化策略、行业应用及未来趋势,重点分析其在多Agent协作和自动化任务中的优势与实践。, AutoGen提供了一个统一的多Agent对话框架,允许开发者创建可自定义、可对话的Agent,这些Agent能够集成LLM、外部工具和人类输入,完成从简单查询到复杂工作流的各种任务。是一个开源框架,专为构建基于大型语言模型(LLM)的多Agent系统而设计,通过支持Agent之间的自然语言对话和工具调用,实现任务的自动化和协作。
2025-04-25 20:39:03
712
原创 5.1 LangChain:功能强大的框架,适用于构建复杂的LLM驱动应用
LangChain通过简化提示词管理、记忆机制、工具调用和外部系统集成,支持从简单聊天机器人到复杂多智能体系统的开发,广泛应用于客服自动化、金融分析、供应链优化和医疗诊断等领域。本章基于最新研究,深入探讨LangChain的定义、核心功能、实现技术、优化策略、行业应用及未来趋势,重点分析其在复杂LLM应用中的优势与实践。其核心目标是简化LLM应用生命周期,包括开发、调试、优化和部署。是一个开源框架,专为开发基于LLM的应用而设计,通过提供模块化组件和抽象层,增强LLM的定制化、上下文感知和外部集成能力。
2025-04-25 13:25:24
510
原创 4.4 记忆机制与上下文管理:短期与长期记忆的设计与应用
(Long-Term Memory, LTM)支持Agent存储、检索和利用信息,短期记忆处理即时任务的上下文,长期记忆支持跨会话学习和个性化服务。本章基于最新研究,深入探讨短期与长期记忆的设计原则、实现技术、优化策略、行业应用及未来趋势,重点分析如何通过高效记忆机制提升Agent性能。记忆机制与上下文管理通过短期和长期记忆设计,为Agent系统提供了强大的信息存储和检索能力。是指Agent动态维护和利用相关信息的过程,通过整合短期和长期记忆,确保任务执行的连贯性和准确性。
2025-04-24 21:58:56
583
原创 4.3 工具调用与外部系统集成:API调用、MCP(模型上下文协议)、A2A、数据库查询与信息检索的实现
提示词工程通过精心设计的自然语言提示词(Prompts),引导大型语言模型(Large Language Models, LLMs)生成准确、相关的输出,而任务建模通过结构化分析任务目标、输入、输出及子任务,确保提示词能够有效反映任务需求。提示词可以是简单的查询(如“总结这篇文章”),也可以是复杂的指令序列(如“逐步分析财务报表,提炼三点关键指标”),其核心目标是利用LLM的预训练知识和推理能力,完成特定任务而无需额外微调。CoT的核心是将任务拆解为子任务,每个子任务由LLM独立处理,最终得出答案。
2025-04-24 21:52:45
991
原创 4.2 Prompt工程与任务建模:高效提示词设计与任务拆解方法
提示词工程通过精心设计的自然语言提示词(Prompts),引导大型语言模型(Large Language Models, LLMs)生成准确、相关的输出,而任务建模通过结构化分析任务目标、输入、输出及子任务,确保提示词能够有效反映任务需求。提示词可以是简单的查询(如“总结这篇文章”),也可以是复杂的指令序列(如“逐步分析财务报表,提炼三点关键指标”),其核心目标是利用LLM的预训练知识和推理能力,完成特定任务而无需额外微调。CoT的核心是将任务拆解为子任务,每个子任务由LLM独立处理,最终得出答案。
2025-04-24 21:40:53
1042
原创 4.1 融合架构设计:LLM与Agent的协同工作模型
这种协同工作模型利用LLM的语言理解、推理和生成能力,为Agent提供强大的知识支持,而Agent通过感知、决策和执行功能,将LLM的智能转化为实际行动。然而,模型不稳定性(如幻觉、过度自信)、总结不专业(如信息冗余、准确性不足)以及复杂任务协调的挑战(如多Agent冲突)限制了其效能。是一种融合架构,其中LLM作为核心推理引擎,提供语言理解、知识推理和生成能力,而Agent通过感知环境、制定决策和执行行动,将LLM的输出转化为实际结果。:查询Agent和推荐Agent协作,门控器根据问题类型选择。
2025-04-24 21:20:20
773
原创 3.4 Agent的生命周期管理:任务分解、状态管理与反馈机制
智能代理(Agent)的生命周期管理是其在复杂环境中高效运行的核心保障。Agent的生命周期涵盖了从任务接收到结果交付的整个过程,涉及任务分解(Task Decomposition)、状态管理(State Management)和反馈机制(Feedback Mechanisms)三大关键环节。这些环节共同确保Agent能够将复杂任务分解为可执行的子任务,跟踪任务执行的状态,并在运行中持续优化行为。3.4.1 任务分解(Task Decomposition)定义与概述任务分解是指将复杂任务拆分为一系列较小的、
2025-04-23 21:57:27
524
原创 3.3 技术框架:LangChain、ReAct、Memory与Tool Integration
LangChain、ReAct、Memory和Tool Integration是2025年构建智能代理的核心技术框架,共同支撑了Agent在感知、推理、行动和学习方面的能力。(Reasoning and Acting)是一种AI代理框架,通过将推理(Reasoning)和行动(Acting)交替进行,使代理能够处理需要多步骤推理和外部工具交互的复杂任务。本章将深入探讨这些技术框架的定义、核心组件、实现技术、行业应用及其在2025年的最新发展趋势,结合具体案例和分析,为读者提供全面的理论指导和实践洞察。
2025-04-23 21:49:24
1265
原创 3.2 Agent核心能力:感知、规划、决策与执行
这些能力共同构成了Agent的智能框架,使其能够从感知环境开始,制定行动计划,做出合理决策,并通过具体行动影响环境。本文将系统且专业地探讨这四大核心能力的定义、作用、关键技术、应用场景以及它们之间的协同关系,并通过具体示例和行业案例加以阐释,旨在为读者提供深入的理论指导和实践洞察。例如,在自动驾驶中,车辆感知道路状况,规划行驶路径,决策变道或减速,执行转向或刹车,并通过感知反馈调整策略,形成动态适应能力。决策能力使Agent能够在动态、不确定环境中快速响应,选出最优或次优的行动方案,是智能行为的关键环节。
2025-04-23 21:26:47
1184
原创 3.1 Agent定义与分类:自主Agent、协作Agent与混合Agent的特点
特别是在大模型(Large Models)的赋能下,Agent的功能得到了显著增强,其应用范围从简单的自动化任务扩展到了复杂的决策支持和多实体协作场景。本节将深入探讨Agent的定义与分类,重点分析自主Agent、协作Agent和混合Agent的特点,并通过具体的应用场景和示例阐释其在企业实践中的价值。本节将首先明确Agent的定义及其基本构成,然后分别详细介绍自主Agent、协作Agent和混合Agent的特性、优势及其适用场景,最后通过比较与总结为企业应用实践提供理论指导。
2025-04-23 21:04:30
607
原创 2.4 持续学习与自适应:模型更新机制与在线学习策略
在动态的业务环境中,数据分布、用户需求和外部环境不断变化,模型必须具备持续学习和自适应能力,以保持性能和适用性。: 未来,大模型将通过持续学习和在线学习实现真正的“终身学习”,从被动响应转变为主动适应。: 持续学习是一种机器学习范式,旨在使模型在面对新数据或任务时,动态更新参数,保持对旧知识的记忆,同时适应新信息。模型更新机制是大模型持续学习的基础,通过定期或实时调整参数,保持模型的性能和适应性。在线学习是大模型自适应的核心技术,使模型能够实时处理流式数据,动态更新参数。
2025-04-23 14:20:20
597
原创 2.3 训练与优化:数据准备、分布式训练、微调与推理优化技术
从数据准备到分布式训练,再到微调和推理优化,每一环节都直接影响模型的性能、效率和适用性。本节将系统阐述大模型训练与优化的核心技术,包括数据准备的流程与挑战、分布式训练的架构与算法、微调的方法与实践,以及推理优化的关键技术。高质量的数据为模型奠定基础,分布式训练实现规模化计算,微调适配特定任务,推理优化确保高效部署。未来,随着自动化、效率和绿色计算的进步,大模型将在企业中实现更广泛的应用,推动智能化转型。: 大模型需要海量、多样化的数据进行预训练,以学习语言的统计规律和语义表示。
2025-04-23 14:05:03
254
原创 2.2 主流大模型架构:GPT、DeepSeek、GLM、Claude、QwQ、Qwen2.5-Max等模型的比较与应用场景
OpenAI的GPT系列、DeepSeek的R1和R2、清华大学GLM、Anthropic的Claude、阿里巴巴的QwQ以及Qwen2.5-Max代表了当前大模型技术的顶尖水平。GPT-4o在多模态和通用任务中领先,DeepSeek和QwQ在STEM应用中占优,GLM-4和Qwen2.5-Max在中文和多语言场景中表现出色,Claude则以安全性和长上下文能力著称。最新版本包括GPT-3.5、GPT-4、GPT-4o和GPT-4.5(截至2025年4月),在GPT-3基础上进一步扩展了规模和功能。
2025-04-23 13:41:41
1255
原创 markdown展示数学公式
Markdown本身并不原生支持数学公式的渲染,但许多Markdown解析器(例如在GitHub、Jupyter Notebooks、或一些博客平台中)都支持使用LaTeX语法来渲染数学公式。要让Markdown正确展示数学公式,你需要使用支持数学公式渲染的工具,比如在支持LaTeX语法的Markdown编辑器中进行编写。如果你正在使用的平台不支持LaTeX,你可能需要寻找一些插件或工具来启用这种功能。这样就会在行内显示你的公式。
2025-04-23 13:38:22
233
原创 2.1 大模型概述:定义、演变与核心特性
在技术基础之上,第六章通过丰富的行业案例分析,展示了大模型与Agent在客户服务、内容生成、数据分析等多种企业场景中的具体应用,使理论知识落地为实际价值。第二章和第三章构建了坚实的技术理论基础,分别深入剖析了大模型的核心架构与智能代理的基本框架,为后续内容奠定了概念与理论支撑。随着内容的深入,本书将逐步引导读者从理解基础概念,到掌握技术实现,再到规划落地路径,最终建立起一个全面系统的大模型与Agent应用知识体系,为企业智能化转型提供可靠的理论指导与实践参考。
2025-04-23 13:13:00
715
原创 1.3 本书结构概览:从理论基础到实践案例的系统阐述
在技术基础之上,第六章通过丰富的行业案例分析,展示了大模型与Agent在客户服务、内容生成、数据分析等多种企业场景中的具体应用,使理论知识落地为实际价值。第二章和第三章构建了坚实的技术理论基础,分别深入剖析了大模型的核心架构与智能代理的基本框架,为后续内容奠定了概念与理论支撑。随着内容的深入,本书将逐步引导读者从理解基础概念,到掌握技术实现,再到规划落地路径,最终建立起一个全面系统的大模型与Agent应用知识体系,为企业智能化转型提供可靠的理论指导与实践参考。
2025-04-22 22:09:30
235
原创 1.2 目标读者:企业技术决策者、产品经理、AI工程师及研究人员
本书为企业技术决策者、产品经理、AI工程师及研究人员提供量身定制的指导,帮助他们在AI驱动的未来占据领先地位。决策者将学会制定战略并应对挑战,产品经理将掌握技术转化和用户体验优化的方法,工程师和研究人员将精通最新技术和开发实践。基于2025年4月22日的最新趋势和研究数据,本书旨在为这些读者提供从战略到技术的全方位指导,帮助他们理解AI大模型和Agent的战略价值、技术细节和实践应用。AI工程师和研究人员需要掌握2025年的最新技术趋势和实践应用,以开发高效的AI系统。构建AI系统的技术方法和优化技巧。
2025-04-22 22:03:20
236
原创 1.1 AI大模型与Agent的兴起及其对企业数字化转型的推动作用
2019年,GPT-3的问世标志着LLMs进入了一个新的阶段,参数量激增至1750亿,模型在自然语言处理(NLP)任务中的表现大幅提升,支持多任务学习和零样本学习(Zero-shot Learning),能够在无需额外训练的情况下完成多种任务。Deloitte的预测进一步指出,到2025年,25%的使用生成式AI的企业将部署Agent,到2027年这一比例将升至50%,显示出企业对Agent采用率的快速提升。尽管AI技术在企业中的应用前景广阔,但2025年的数据显示,企业AI的成熟度仍有待提升。
2025-04-22 21:59:28
661
原创 《大模型+Agent 企业应用实践》的大纲
第3章:智能代理(Agent)概念与架构。第4章:大模型与Agent的融合机制。第5章:主流Agent框架与实现方法。第6章:企业应用场景与案例分析。第7章:系统设计与架构实践。第9章:产品化与运营策略。第2章:大模型技术基础。第8章:挑战与最佳实践。
2025-04-22 21:47:35
382
原创 Mermaid 是什么,为什么适合AI模型和markdown
Mermaid 是一个基于 JavaScript 的开源绘图和图表工具,允许用户通过简单的文本语法创建图表。它支持生成流程图、时序图、类图、甘特图等多种类型的可视化内容,并直接从类似 Markdown 的代码中渲染。Mermaid 因其与 Markdown 环境的无缝集成而广泛应用于技术文档。Mermaid 的主要特性文本语法:使用简单易读的语法定义图表,例如 graph TD;A–>B;表示一个流程图。动态渲染:在支持的平台(如浏览器、Markdown 查看器)中实时渲染图表。支持多种图表。
2025-04-19 21:55:12
696
原创 关于 sklearn 包的安装问题
不过,最好的做法还是更新 requirements.txt 文件,使用正确的包名。或者手动编辑 requirements.txt 文件,将第4行的。PyPI 包已被弃用,你应该使用。
2025-04-18 21:53:37
218
原创 Markdown 教程
Markdown 支持直接嵌入 HTML,因此你可以使用 HTML 标签来定义更多自定义样式。">这段文字是红色的</p>
2025-04-17 15:13:03
290
原创 python代码,将一个pdf文件每10页拆分成一个,拆成多个pdf
以下是一个Python代码示例,它使用PyPDF2库将一个PDF文件拆分成每10页一个新的PDF文件。你可以根据需要调整每个拆分的页面数量。
2025-04-16 13:03:01
195
原创 docker-compose 启动mysql,永久挂载外部数据节点
mysql_data持久化挂载到宿主机,并防止 MySQL 数据在容器重启后丢失。
2025-04-13 10:07:27
848
原创 Node.js 项目 用 `Docker Compose` 发布的完整流程
步骤说明1️⃣ 创建Dockerfile定义镜像构建流程2️⃣ 创建定义服务,设置端口、环境变量等3️⃣ 构建并启动4️⃣ 验证服务运行访问 http://localhost:30005️⃣ 部署上线搭配服务器 + 反向代理部署。
2025-04-12 13:57:57
336
原创 国内下载不了镜像,可以用国外机器下载完成,打成tar文件,在国内机器上重新加载
可以在,然后。这是离线部署 Docker 镜像的常用方法,非常适合网络受限的环境。
2025-04-09 21:30:57
461
原创 读取excel作为第一列创建数据表,然后将值插入数据表
N/A下面是一个 Python 示例代码,使用pandas读取 Excel 文件,创建数据库表(假设使用MySQL)并将数据插入数据库。
2025-04-02 23:17:14
398
原创 agent的开发框架有哪些?各自有有什么优缺点?
选择适合的智能体开发框架应根据项目的具体需求、团队的技术能力以及预期的系统复杂度进行综合评估。建议在决策前,深入了解各框架的特性,并根据实际情况进行选择。在人工智能领域,智能体(Agent)开发框架为构建自主决策和执行任务的系统提供了基础。
2025-04-01 21:45:38
424
原创 Ubuntu 22.04 上安装阿里云 CLI(命令行工具)
配置完成后,你就可以通过命令行与阿里云服务进行交互了。通过这些步骤,你已经成功在 Ubuntu 22.04 上安装并配置了阿里云 CLI。
2025-03-30 20:19:04
691
原创 Visual Studio Code 进行汉化
安装完中文语言包后,VS Code 会提示是否重新加载以应用语言设置。这样,你就可以将 Visual Studio Code 完成汉化。选择后,VS Code 会提示您重新加载窗口,点击。重新加载后,VS Code 界面将会显示为中文。打开 Visual Studio Code。VS Code 会自动下载并安装中文语言包。在弹出的语言包列表中,选择。
2025-03-30 18:10:10
720
xhell和Xftp学校版本
2020-10-21
geexekscore.zip
2020-06-12
citycode.sql
2019-07-02
navicat for sqlite安装文件
2019-01-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人