一、简介
numpy主要是用来存储和处理大型矩阵,提供了一种存储单一数据类型的多维数组对象------ndarray。还提供了多种运算函数,能够完成数据计算和统计分析,是数据分析的重要工具包。
二、数组对象(ndarray)
1、创建数组对象
(1)、创建自定义数组
1、numpy.array(object,dtype=None,copy=True,order='K',subok=False,ndmin=0)
object:就是要创建的数组
dtype:表示数组所需的数据类型,默认是None,即保存对象所需的最小类型
ndmin:指定生成数组应该具有的最小维数,默认为None。
2、通过arange函数创建一维数组:arange(start, end, sep)
3、创建一维等差数组:linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
4、创建等比数列:logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
5、创建全零数组:zeros(shape, dtype=None, order='C')
6、创建全为1的数组:ones(shape, dtype=None, order='C')
7、创建对角线全为1的多维数组:eye(N, M=None, k=0, dtype=float)
8、创建自定义对角线数值的数组:diag(v, k=0)
(2)、创建随机数组,利用numpy包里的random模块
1、创建0-1的随机浮点数一维数组:random.random(num)
2、创建指定范围的随机整数多维数组:randint(low, high=None, size=None, dtype='l')
3、创建服从均匀分布的随机数组,范围[0, 1):rand(*dn)
4、创建服从正态分布的随机数组:randn(*dn)
2、数组对象属性
---------数组属性:
ndim:表示数组维数,返回int类型
shape:表示数组的形状大小,对于n行m列的矩阵,形状为(n,m),返回tuple类型
size:表示数组的元素总个数,等于数组形状的乘积,返回int类型
dtype:描述数组中的元素的类型,返回data-type
itemsize:表示数组的每个元素的大小(以字节为单位),返回int类型
-----------访问属性:
3、改变数组形状
(1)、使用shape改变形状
(2)、使用reshape改变形状
(3)、展平数组:
----使用ravel函数
----使用flatten函数
(4)、组合数组:
-----使用hstack/vstack函数
-----使用concatenate函数
(5)、分割数组:
-----使用hsplit/vsplit函授
-----使用split函数
4、访问数组
(1)、一维数组的访问
(2)、二维数组的访问
三、数据类型
numpy的数据类型比python内置的数据类型多,常用的数据类型如下所示:(引用菜鸟教程:http://www.runoob.com/numpy/numpy-dtype.html)
四:numpy的矩阵对象
1、创建矩阵
2、矩阵属性
T:返回自身的转置
H:返回自身的共轭转置
I:返回自身的逆矩阵
A:返回自身数据的二维数组的一个视图
3、矩阵运算
(1)、四则运算
(2)、比较运算
比较运算符:>、<、==、>=、<=、!=
返回结果:一个布尔数组,也就是每个元素的比较结果
(3)、逻辑运算
逻辑运算符:逻辑或-----any,逻辑与------all
返回结果:一个布尔值True或False
五、ufunc函数(universal function)
1、概念:
全程通用函数(universal function),是一种能够对数组中所有元素进行操作的函数,结果是以数组形式输出,因此不需要对数组每个元素都进行操作,所以比math库中的函数操作效率高。
2、广播机制
广播(broadcasing)是指不同形状的数组之间进行算数运算的一种方式。
3、广播机制----->四原则
参与运算的数组其中一个的维度为1且列相等
参与运算的数组的维度相等,则其中一个的列为1且行相等
参与运算的数组都向其中形状最大的看齐,即根据shape属性最大的运算,形状不足的就加按照行或列补齐,也就是行复制或者列复制
输出的数组跟最大的数组形状相同
六、利用numpy统计分析
1、文件的读写
(1)、以二进制形式写入/读取文件
-----写入文件:save(file, arr, allow_pickle=True, fix_imports=True)/savez(file, arr, allow_pickle=True, fix_imports=True)
-----读取文件:load(file, mmap_mode=None, allow_pickle=True, fix_imports=True,encoding='ASCII')
(2)、以文本形式写入/读取文件(txt,csv格式)
-----写入文件:loadtxt(fname, dtype=float, comments='#', delimiter=None,converters=None, skiprows=0, usecols=None, unpack=False,ndmin=0)
-----读取文件:loadtxt(fname, dtype=float, comments='#', delimiter=None,converters=None, skiprows=0, usecols=None, unpack=False,ndmin=0)
2、数组排序
(1)、直接排序
方法:sort(a, axis=-1, kind='quicksort', order=None)
参数:axis=1 为沿横轴排序; axis=0 为沿纵轴排序,默认沿横轴排序
(2)、间接排序
方法:argsort(a, axis=-1, kind='quicksort', order=None),返回的是下标
参数:axis=0 为沿横轴排序; axis=0 为沿纵轴排序,默认沿横轴排序
3、数据去重
方法:unique(ar, return_index=False, return_inverse=False,return_counts=False, axis=None)
4、重复数据,可以理解为数据的复制
(1)、重复整个数组
方法:tile(A, reps)
参数:A表示数组,reps表示重复的个数
(2)、重复数组中的元素
方法:repeat(a, repeats, axis=None)
参数:a 表示传入的数组,repeats表示要重复的次数,axis=1表示沿横轴重复,axis=0表示沿纵轴重复
5、常用统计函数
参数:axis=0 表示纵向计算
axis=1 表示横向计算
默认不写 表示计算整个数组
(1)、求和:sum
(2)、求平均值:mean
(3)、求最大值:max
(4)、求最小值:min
(5)、求最大元素的索引:argmax
(6)、求最小元素的索引:argmin
(7)、求方差:var
(8)、求标准差:std
(9)、求所有元素的累计和:cumsum
(10)、求所有元素的累计积:cumprod