排序:
默认
按更新时间
按访问量

pandas.DataFrame简介

一、概念 类似表格,可以看成由Series组成的字典。Series的各个index看成列索引。 二、定义 注意传入的列索引需要加上冒号:,默认索引为0,1,2,.... from pandas import DataFrame data={'a':[1,2,3,4],'b':[2,3,...

2018-08-08 21:14:11

阅读数:10

评论数:0

pandas.Series简介

一、导入 from pandas import Series import pandas as pd#注意着两个导入的先后顺序 二、示例 2.1 初始化 Series相当于一个一维数组,Series显示时的一大好处就是会自动对齐 传入一个list,index默认为0~N-1 注意a...

2018-08-07 15:15:44

阅读数:8

评论数:0

牛顿切线法

关键字:牛顿(Newton)迭代公式,几何意义,收敛速度,收敛定理,多重根 参考:https://wenku.baidu.com/view/9fa19f3bfe00bed5b9f3f90f76c66137ee064fcd.html 一、步骤 对于,假设一个近似解为(因为可能会有很多根),那么...

2018-07-27 21:27:05

阅读数:31

评论数:0

三次B样条插值和误差分析

关键字:基函数,控制点,节点 参考:http://www.docin.com/p-1511846558.html  前言:之前写写过一篇B样条曲线,这篇是原文的深度扩展,是针对B样条曲线的一种特殊情况,三次B样条,讨论了其插值和误差分析,添加了一些个人总结。 思路:根据已知的型值点(就是给出...

2018-07-27 20:10:46

阅读数:29

评论数:0

B样条曲线(B-spline Curves)

关键字:基函数,控制点,节点, 另一个讲的很好的 https://www.cnblogs.com/icmzn/p/5100761.html 看了网上很多相关资料才得以下笔,资料太多,这里就不一一列举了,感谢各位大佬的资料 本博客顺序不太好,看前面的东西可能需要提前看后面的东西。正在努力修炼,...

2018-07-27 16:34:38

阅读数:21

评论数:0

回归分析----ROOT

一、定义 通常用于分析自变量x对因变量Y的影响,以便建立两者之间的数学模型。也用来预测。 通常因变量除了受自变量x的影响,还受次要变量的影响,但是其他变量的影响很微小,这些变量不像x一样容易控制,会呈现出较大的不确定性,所以这些次要变量通常用一个变量表示。 由此建立回归分析模型,因为是随机变...

2018-07-25 16:08:38

阅读数:22

评论数:0

插值与拟合,样条插值

关键字:,B样条,回归 一、定义 也叫“内插法”,给定包含一组(x,f(x)),该组里面有n个数据点。然后根据这一组数据点计算一个新的点Xi处对应的的f(Xi)值,一般这个新的点对应的值f(x)都是经过近似得到。GPR就是其中一种计算f(Xi)的值的方法。 百度百科定义:是利用函数f (x)...

2018-07-24 20:55:37

阅读数:13

评论数:0

回归分析,同时置信带

关键字:回归分析,同时置信带,相互独立,横截面数据,纵向数据 一、回归分析 1.1 定义 回归分析(regression analysis)是确定两种或两种以上变量(比如自变量与因变量,自变量也叫协变量)间相互依赖的定量关系的一种统计分析方法。运用十分广泛,通常用于预测分析。 其中为协...

2018-07-22 15:44:18

阅读数:21

评论数:0

先验概率,后验概率

关键字:一、先验概率1.1 定义直观理解,所谓“先”,就是在事情之前,即在事情发生之前事情发生的概率。是根据以往经验和分析得到的概率。1.2 例子比如抛硬币,我们都认为正面朝上的概率是0.5,这就是一种先验概率,在抛硬币前,我们只有常识。这个时候事情还没发生,我们进行概率判断。所谓的先验概率是对事...

2018-07-11 16:43:17

阅读数:28

评论数:0

python的DataFrame,Series

一、DataFrame初始化1.1 通过字典初始化字典的键对应列名,键的值对应列的值。每个键应的值应该是一个list,如果键对应的值只是一个值而不是一个list,就这个列的所有值都是这个键对应的值。注意所有list的长度应该一样,不能一个list都没有。d={'a':[1,2,3],'b':[3,...

2018-07-08 20:01:03

阅读数:25

评论数:0

机器学习笔记8——大规模机器学习(Large scale machine learning)

概要:大规模机器学习用于处理大数据集一、随机梯度下降法1.1 产生由于梯度下降法(批量梯度下降法,每次都需要考虑所有的样本)在计算规模很大的数据时比较慢,所以产生了随机梯度下降法1.2 定义首先随机打乱所有数,这是数据预处理的过程(本次迭代只需要计算一个样本)二、Mini-batch梯度下降2.1...

2018-07-08 10:07:44

阅读数:67

评论数:0

机器学习笔记8——推荐系统Recommender Systems

前言:这是机器学习的一个重要应用领域,就像淘宝给你推荐商品一样一、问题规划(电影评分)1.1 符号表示表示用户的数量,下标表示具体的第几个用户表示电影的数量,下标表示具体的第几部电影为1时,表示用户给电影评价了用户对电影评价得分,为0-5表示1.2 问题定义给出,然后预测用户对自己还没有评价的电影...

2018-07-07 22:21:12

阅读数:35

评论数:0

机器学习笔记7——异常检测(Anomaly Detection)

前言:这是机器学习算法的一个应用,主要用于无监督学习。一、定义    已知有了一些数据,,新来一个数据,需要判断这个数据是否异常。给定无标签数据集,对数据建模为P(x),x为特征变量。如果,就是阈值,那么就认为这是异常。二、利用高斯分布进行异常检测(样本都无标记)1、条件每个数据有n个特征,可以理...

2018-07-07 20:50:47

阅读数:52

评论数:0

机器学习笔记6——无监督学习(聚类算法)

关键字:K-means算法,聚类中心,畸变函数一、定义与有监督学习相比,无监督学习的样本没有任何标记。无监督学习的算法需要自动找到这些没有标记的数据里面的数据结构和特征。这里介绍一下聚类算法。二、聚类算法2.1 定义把数据集分成一个个的簇cluster(也可以理解为一组一组的形式)2.2 K-me...

2018-07-07 11:37:30

阅读数:429

评论数:0

机器学习笔记5——系统设计

关键字:偏斜类,查准率,召回率一、垃圾邮件分类的例子1.因为垃圾邮件有一些典型的出现比较多的词,比如buy,diccount,hurry等等,所以可以先从训练集中选择出现频率最高的一些词,把他们放到一个向量里去,这个向量叫特征变量。然后判断的时候就是如果单词出现了,对应的地方就记为1,否则记为0....

2018-07-06 16:24:47

阅读数:41

评论数:0

机器学习笔记4——过拟合与正则化

关键字:正则化参数前言:有关代价函数,在笔记2和3逻辑回归和线性回归里面已经提到过。这里就不再过多介绍。一、定义因为训练模型中有些数据本来就有误差,所以不必把每个数据都考虑进去。如果真的完全拟合到每一个数据,那么模型会变得很奇怪,导致新的预测数据来时,对应的预测值往往显然错误。这个现象就是过拟合。...

2018-07-05 22:16:18

阅读数:29

评论数:0

机器学习笔记3--逻辑(Logistic)回归

关键字:回归,分类,sigma函数,惩罚项虽然名字里有回归,但是这是一个分类问题1.分类问题此前的回归模型预测的y是一个连续值,但是分类问题里面的y是一个离散值,通常为0或者1,表示否或者是,分别代表负类和正类。更一般的情况是y可以取不止两个离散值。2.定义对于输出为0和1的分类问题,逻辑回归里输...

2018-07-05 21:03:29

阅读数:41

评论数:0

机器学习笔记2——多变量线性回归

1.定义:顾名思义,多变量线性回归就是变量不止一个。因为是线性的,所以可以表示为其中的ai是有实际意义的,表示当Xi变化一个单位后,对应的Y的变化...

2018-07-05 11:10:34

阅读数:48

评论数:0

矩阵相关

1、表示4*2矩阵的全体矩阵的集合

2018-07-05 09:11:41

阅读数:29

评论数:0

机器学习笔记1——单变量线性回归

关键字:代价函数,梯度下降话说这个梯度下降法我们的专业课数值线性代数是有的,突然发现数值线性代数果然是有用的啊

2018-07-04 22:03:27

阅读数:41

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭