最短增广路算法

Dinic算法

 

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define INF 0x3f3f3f3f
 4 #define M(a, b) memset(a, b, sizeof(a))
 5 const int N = 1e3 + 5;
 6 struct Edge {
 7     int from, to, cap, flow;
 8 };
 9 
10 struct Dinic {
11     int n, m, s, t;
12     vector<Edge> edges;
13     vector<int> G[N];
14     bool vis[N];
15     int d[N], cur[N];
16 
17     void AddEdge(int from, int to, int cap) {
18         edges.push_back((Edge){from, to, cap, 0});
19         edges.push_back((Edge){to, from, 0, 0});
20         m = edges.size();
21         G[from].push_back(m-2); G[to].push_back(m-1);
22     }
23 
24     bool bfs() {
25         M(vis, 0);
26         queue<int> q;
27         q.push(s);
28         d[s] = 0; vis[s] = 1;
29         while (!q.empty()) {
30             int x = q.front(); q.pop();
31             for (int i = 0; i < G[x].size(); ++i) {
32                 Edge &e = edges[G[x][i]];
33                 if (!vis[e.to] && e.cap > e.flow) {
34                     vis[e.to] = 1;
35                     d[e.to] = d[x] + 1;
36                     q.push(e.to);
37                 }
38             }
39         }
40         return vis[t];
41     }
42 
43     int dfs(int x, int a) {
44         if (x == t || a == 0) return a;
45         int flow = 0, f;
46         for (int &i = cur[x]; i < G[x].size(); ++i) {
47             Edge &e = edges[G[x][i]];
48             if (d[e.to] == d[x] + 1 && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0) {
49                 e.flow += f;
50                 edges[G[x][i]^1].flow -= f;
51                 flow += f; a -= f;
52                 if (a == 0) break;
53             }
54         }
55         return flow;
56     }
57 
58     int Maxflow(int s, int t) {
59         this->s = s; this->t = t;
60         int flow = 0;
61         while (bfs()) {
62             M(cur, 0);
63             flow += dfs(s, INF);
64         }
65         return flow;
66     }
67 
68 };
View Code

 

转载于:https://www.cnblogs.com/robin1998/p/6724706.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
算法导论》第22章主要介绍了图算法中的基本概念和经典算法。这一章的内容比较深入和复杂,主要包括最路径算法、最小生成树算法和最大流算法等。 最路径算法是图算法中非常重要的一种算法,它能够找到图中任意两个顶点之间的最路径。在这一章中,介绍了两种经典的最路径算法:Dijkstra算法和Bellman-Ford算法。Dijkstra算法适用于图中边权重非负的情况,而Bellman-Ford算法可以处理边权重可能为负的情况。 接着,本章介绍了最小生成树算法,最常用的算法是Prim算法和Kruskal算法。最小生成树是指在无向图中选择一棵连通子图,使得该子图包含图中所有顶点,并且边的权重之和最小。Prim算法基于贪心策略,从某一起始点开始,每次选择一个最小权值的边加入树中,直到生成树包含所有顶点。而Kruskal算法是基于集合的不相交集合数据结构,按照边的权值递的次序选择边,将边所连接的两个顶点所在的集合合并,直到树中包含所有顶点。 最后,本章介绍了最大流算法,主要包括Ford-Fulkerson算法和Edmonds-Karp算法。最大流问题是指在一个有向图中,从源点到汇点之间能够通过的最大流量。Ford-Fulkerson算法采用广路径的方法,不断在残留网络中查找广路径,并更新流的值,直到没有广路径为止。而Edmonds-Karp算法是Ford-Fulkerson算法的变种,通过使用广度优先搜索来寻找广路径,提高算法的效率。 总结来说,《算法导论》第22章介绍了图算法中的最路径算法、最小生成树算法和最大流算法等重要概念和经典算法,并详细阐述了它们的原理和实现。这些算法在实际应用中具有非常重要的意义,对于解决图相关的问题具有很高的实用性和有效性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值