最大流的算法——Edmonds-Karp算法(最短路径增广算法)
这里介绍一个最简单的算法:Edmonds-Karp算法 即最短路径增广算法 简称EK算法
EK算法基于一个基本的方法:Ford-Fulkerson方法 即增广路方法 简称FF方法
增广路方法是很多网络流算法的基础 一般都在残留网络中实现
其思路是每次找出一条从源到汇的能够增加流的路径 调整流值和残留网络 不断调整直到没有增广路为止
FF方法的基础是增广路定理(Augmenting Path Theorem):网络达到最大流当且仅当残留网络中没有增广路
要实现这个算法,就遇到了三个问题:
(1)最多要增广多少次?
可以证明 最多O(VE)次增广 可以达到最大流 证明略
(2)如何找到一条增广路?
先明确什么是增广路: 增广路是这样一条从s到t的路径 路径上每条边残留容量都为正
把残留容量为正的边设为可行的边 那么我们就可以用简单的BFS得到边数最少的增广路
(3)BFS得到增广路之后 这条增广路能够增广的流值, 是路径上最小残留容量边决定的
把这个最小残留容量MinCap值加到最大流值Flow上, 同时路径上每条边的残留容量值减去MinCap
最后,路径上每条边的反向边残留容量值要加上MinCap
看一个具体的增广路算法的例子吧