熵
继《数学狂想曲(九)》之后,再谈谈熵。
Landauer’s Erasure Principle
在量子力学中,如同电荷、质量、时间有最小单位一样,热力学熵也有最小单位。Landauer’s Erasure Principle指出这个单位为 K B ln ( 2 ) K_B\ln(2) KBln(2),其中 K B K_B KB为玻尔兹曼常数。
Rolf Landauer,1927~1999,美国物理学家。出身于一个德国的犹太人家庭,1938年为躲避纳粹,全家移民美国。Harvard University本科(1945)+博士(1950)。IBM研究员。美国科学院、美国工程院院士。
需要指出的是:Landauer原理中虽有“信息”一词,但仍是物理学的概念,对应了物质/能量的转移。而信息熵是数学概念,对应的是抽象的对象。因此,前者的公式中还有一个 K B K_B KB的存在。
参考:
https://mp.weixin.qq.com/s/Gmfu9iLC71XmfQ5qyraIpQ
信息的物理性:从麦克斯韦妖到兰道尔擦除
https://mp.weixin.qq.com/s/vlhgdxjVJaiD6VbX1u3how
新·麦克斯韦妖
https://mp.weixin.qq.com/s/G-PCyPVqoH77-4Gt_BhS8Q
一个经典热力学思想实验的量子版本(吉布斯佯谬)
焓
焓(enthalpy)是一个和熵经常一起出现的概念。由于和信息论关系不大,这里仅作简要通俗的介绍,而非严格定义。
上面提到的热力学过程,只涉及气体的PVT变换,气体本身的其他状态并没有改变。而实际情况要复杂的多,比如气体会发生化学反应,也会发生相变(变成液态/固态),而这些变化本身,会吸收/释放热量,这时系统的内能就不再守恒了。焓就是用来度量这种变换的。
例如:
对于等温下的化学反应,若反应吸热,产物的焓高于反应物的焓;若反应放热,产物的焓应低于反应物的焓。
朗肯循环
上图是核电站的原理结构图。可以看到,其中有一个冷却蒸汽的过程。
好容易被加热的蒸汽,为什么要冷却呢?
术语:释放出热势能的蒸汽从汽轮机下部的排汽口排出,被称为乏汽。
单纯的热蒸汽膨胀做功,是可以将热能完全转换为机械能的。然而,如果没有循环的话,这就成了一次性的买卖。而一个能够循环做功的热机,才是有实际用处的。这也是卡诺和朗肯为什么都要研究循环的原因。
乏汽的温度和蒸汽差不多,但气压却低的多,如果不加压的话,根本进不了锅炉加热。然而,压缩空气是一个耗费机械能的过程,由卡诺循环可知,它耗费的能量要大于蒸汽对汽轮机做的功,两者的差值就是所谓的熵。
而乏汽冷却之后变成了水,由于液体的不可压缩特性,它可以很方便的被压入锅炉,从而进入下一轮的循环。
朗肯循环就是用来研究以水为热机工质的循环的。这中间由于水发生了相变,因此是一个焓变过程。
和卡诺循环与热力学第二定律等价不同,朗肯循环的损耗并无定数,使用更优良的工质(比如低沸点有机物)可以提升热机的效率。
William John Macquorn Rankine,1820~1872,英国科学家。University of Edinburgh肄业(读了两年,家里没钱了)。University of Glasgow教授。
https://www.zhihu.com/question/26163433
为什么不能将乏汽直接送入锅炉,而要经过冷却后再送入锅炉?效率不是下降了吗?
阴影面积
题如上图,已知正方形边长为10,求阴影面积。
解:
旋转图形建立坐标系如下图:
阴影部分上下曲边公式如下:
{ x 2 + y 2 = 5 2 x 2 + ( y + 5 2 ) 2 = 1 0 2 \begin{cases} x^2+y^2=5^2 \\ x^2+(y+5\sqrt{2})^2=10^2 \end{cases} {x2+y2=52x2+(y+52)2=102
求解交点坐标:
( y + 5 2 ) 2 − y 2 = 75 → 10 2 y + 50 = 75 (y+5\sqrt{2})^2-y^2=75 \to 10\sqrt{2}y+50=75 (y+52)2−y2=75→102y+50=75
{ y = 5 2 4 x = 175 8 \begin{cases} y=\frac{5\sqrt{2}}{4} \\ x=\sqrt{\frac{175}{8}} \end{cases} {y=452x=8175
用积分法求解阴影面积:
S 4 = ∫ 0 175 8 ( 5 2 − x 2 ) − ( ( 1 0 2 − x 2 ) − 5 2 ) d x = ∫ 0 175 8 ( 5 2 − x 2 ) d x − ∫ 0 175 8 ( 1 0 2 − x 2 ) d x + 5 2 ⋅ 175 8 \frac{S}{4} =\int_0^{\sqrt{\frac{175}{8}}}\sqrt{(5^2-x^2)}-(\sqrt{(10^2-x^2)}-5\sqrt{2})\mathrm{d}x \\ = \int_0^{\sqrt{\frac{175}{8}}}\sqrt{(5^2-x^2)}\mathrm{d}x - \int_0^{\sqrt{\frac{175}{8}}}\sqrt{(10^2-x^2)}\mathrm{d}x + 5\sqrt{2} \cdot \sqrt{\frac{175}{8}} 4S=∫08175(52−x2)−((102−x2)−52)dx=∫08175(52−x2)dx−∫08175(102−x2)dx+52⋅8175
查常用积分表,可得:
∫ a 2 − x 2 d x = 1 2 ( x a 2 − x 2 + a 2 arcsin x a ) + C \int \sqrt{a^2 - x^2}\mathrm{d}{x} = \frac12 \left(x\sqrt{a^2 - x^2} + a^2\arcsin\frac xa\right) + C ∫a2−x2dx=21(xa2−x2+a2arcsinax)+C
S 4 = [ 25 16 7 + 25 2 arcsin ( 7 2 2 ) ] − [ 125 16 7 + 50 arcsin ( 7 2 4 ) ] + 25 2 7 = 25 4 7 + 25 2 arcsin ( 7 2 2 ) − 50 arcsin ( 7 2 4 ) \frac{S}{4} =\left[\frac{25}{16}\sqrt{7} + \frac{25}{2}\arcsin(\frac{\sqrt{\frac{7}{2}}}{2})\right] - \left[\frac{125}{16}\sqrt{7} + 50\arcsin(\frac{\sqrt{\frac{7}{2}}}{4})\right] + \frac{25}{2}\sqrt{7} \\ = \frac{25}{4}\sqrt{7} + \frac{25}{2}\arcsin(\frac{\sqrt{\frac{7}{2}}}{2}) - 50\arcsin(\frac{\sqrt{\frac{7}{2}}}{4}) 4S=⎣⎡16257+225arcsin(227)⎦⎤−⎣⎡161257+50arcsin(427)⎦⎤+2257=4257+225arcsin(227)−50arcsin(427)
S = 25 7 + 50 arcsin ( 7 2 2 ) − 200 arcsin ( 7 2 4 ) ≈ 29.27625 S=25\sqrt{7} + 50\arcsin(\frac{\sqrt{\frac{7}{2}}}{2}) - 200\arcsin(\frac{\sqrt{\frac{7}{2}}}{4})\approx 29.27625 S=257+50arcsin(227)−200arcsin(427)≈29.27625
本答案使用Tikz绘图,相关文件地址:
https://github.com/antkillerfarm/antkillerfarm_crazy/blob/master/helloworld/tikz/gnuplot/p1.tex
参考:
https://www.zhihu.com/question/60697114
网传无锡小升初题,求阴影面积
http://wuli.wiki//online/ITable.html
积分表
http://wuli.wiki//online/
小时物理百科
肺炎版《黄冈密卷》
问题由来:
https://mp.weixin.qq.com/s/dR7fg6PTCVAnezlW6gTY2w
新冠病毒最“强”管控,《黄冈密卷》数学题到底有多难
1.设 3 + 2 + 3 + 6 = x + y + z \sqrt{3+\sqrt{2}+\sqrt{3}+\sqrt{6}}=\sqrt{x}+\sqrt{y}+\sqrt{z} 3+2+3+6=x+y+z,且x、y、z为有理数,则 x y z xyz xyz=?
解:
3 + 2 + 3 + 6 = x + y + z + 2 x y + 2 x z + 2 y z 3+\sqrt{2}+\sqrt{3}+\sqrt{6} = x+y+z+2\sqrt{xy}+2\sqrt{xz}+2\sqrt{yz} 3+2+3+6=x+y+z+2xy+2xz+2yz
由x、y、z为有理数可得:
4 x y = 2 , 4 x z = 3 , 4 y z = 6 4xy=2, 4xz=3, 4yz=6 4xy=2,4xz=3,4yz=6
由于x、y、z在原式中是对称的,所以上式中选择哪个等于2、3、6,都是无所谓的。
三式相乘可得:
4 3 ⋅ ( x y z ) 2 = 36 4^3 \cdot (xyz)^2 = 36 43⋅(xyz)2=36
( x y z ) 2 = 9 / 16 (xyz)^2 = 9/16 (xyz)2=9/16
x y z = 3 / 4 xyz = 3/4 xyz=3/4
2.设二次函数 f ( x ) = a x 2 + a x + 1 f(x)=ax^2+ax+1 f(x)=ax2+ax+1的图像开口向下,且满足 f ( f ( 1 ) ) = f ( 3 ) f(f(1))=f(3) f(f(1))=f(3),则 2 a = ? 2a=? 2a=?
解:
令 y = 2 a y=2a y=2a,则 f ( 1 ) = 2 a + 1 = y + 1 f(1)=2a+1=y+1 f(1)=2a+1=y+1
f ( f ( 1 ) ) = f ( y + 1 ) = f ( 3 ) f(f(1))=f(y+1)=f(3) f(f(1))=f(y+1)=f(3)
a ( y + 1 ) 2 + a ( y + 1 ) + 1 = 9 a + 3 a + 1 a(y+1)^2+a(y+1)+1=9a+3a+1 a(y+1)2+a(y+1)+1=9a+3a+1
( y + 1 ) 2 + ( y + 1 ) = 12 (y+1)^2+(y+1)=12 (y+1)2+(y+1)=12
y 2 + 3 y − 10 = 0 y^2+3y-10=0 y2+3y−10=0
( y + 5 ) ( y − 2 ) = 0 (y+5)(y-2)=0 (y+5)(y−2)=0
因为图像开口向下,所以 2 a = − 5 2a=-5 2a=−5。
最近,黄冈再次因数学题而火爆网络。
以下是2020黄冈中考数学第16题:
求上图扇形一边的中点P,在扇形滚动一周的过程中,所经历的路径的长度。
显然,第1,3,4段都是圆弧,难就难在第2段(绿色)了。这条曲线可不是那么好求的,普通的高数搞不定它。必须出动椭圆积分才行。
https://www.zhihu.com/question/408523403
如何解答2020黄冈中考数学第16题?
小学能接受1/3这种无限循环小数,初中能接受根号,高中能接受ln(2),那大学的精确解为什么不能接受椭圆函数。
https://mathworld.wolfram.com/EllipticIntegraloftheSecondKind.html
Elliptic Integral of the Second Kind
这里有个上面动图的GeoGebra版本:
https://github.com/antkillerfarm/antkillerfarm_crazy/blob/master/geogebra/huanggang.ggb