排序:
默认
按更新时间
按访问量

TensorFlow(二)

TensorFlow 控制流 tf.cond a=tf.constant(2) b=tf.constant(3) x=tf.constant(4) y=tf.constant(5) z = tf.multiply(a, b) result = tf.cond(x < y, l...

2018-12-10 09:43:06

阅读数:45

评论数:0

Machine Learning之Python篇(一)

Machine Learning之Python篇 概述 教程 https://ljalphabeta.gitbooks.io/python-/content/ 《Python机器学习》中文版 https://github.com/lawlite19/MachineLearning_Python ...

2018-12-03 09:54:22

阅读数:19

评论数:0

深度学习(三十)——Deep Speech, 自动求导

CTC 推断计算(续) 上图是一个Beam Width为3的Beam Search。Beam Search的细节可参见《机器学习(二十三)》。 由于语音的特殊性,我们实际上用的是Beam Search的一个变种: 如上图所示,所有在合并规则下,能够合并为同一前缀的分支,在后续计算中,都被认为是...

2018-11-26 09:41:57

阅读数:24

评论数:0

word2vec, LSTM Speech Recognition实战, 图数据库

word2vec word2vec是Google于2013年开源推出的一个用于获取word vector的工具包。作者是Tomas Mikolov。 Github: https://github.com/tmikolov/word2vec 注:Tomas Mikolov,捷克布尔诺科技大学博士。...

2018-11-19 10:34:13

阅读数:79

评论数:0

OpenVX, 运算加速库, NVIDIA

OpenVX Khronos Group Khronos Group是一个行业组织,创建开放标准以实现并行计算、图形、视觉、传感处理和动态媒体在各种平台和设备上的编写和加速。Khronos标准包括Vulkan, OpenGL, OpenGL ES, WebGL, OpenCL, SPIR, SYC...

2018-11-12 09:25:50

阅读数:108

评论数:0

深度学习(二十九)——Normalization进阶, CTC

Normalization进阶 和Batch Normalization类似的概念还有Weight Normalization和Layer Normalization。 Batch Normalization 从上图可以看出,BN是对input tensor的每个通道进行mini-batch级别...

2018-11-05 11:11:25

阅读数:78

评论数:0

Machine Learning之Python篇(一)

Machine Learning之Python篇 概述 教程 https://ljalphabeta.gitbooks.io/python-/content/ 《Python机器学习》中文版 https://github.com/lawlite19/MachineLearning_Python ...

2018-10-29 09:25:58

阅读数:62

评论数:0

Kaldi(一)

Kaldi Kaldi是一个语音识别的工具包。它由Daniel Povey于2009年创建。 Daniel Povey,Johns Hopkins University副教授。 个人主页: http://danielpovey.com/ 官网: https://github.com/kaldi...

2018-10-22 09:34:52

阅读数:62

评论数:0

数学狂想曲(十)——复变函数, 平稳离散时间随机过程, 功率谱

熵(续) 信息熵 信息熵和热力学熵的假设相同,因此有类似结论不足为奇,毕竟数学上都是同一个微分方程。 信息熵:编码方案完美时,最短平均编码长度的是多少。 交叉熵:编码方案不一定完美时(由于对概率分布的估计不一定正确),平均编码长度的是多少。平均编码长度=最短平均编码长度+一个增量 H(p,q)=−...

2018-10-15 09:45:40

阅读数:40

评论数:0

数学狂想曲(九)——Bézier curve, 熵

随机过程(续) 中心极限定理 中心极限定理:研究何种条件下独立随机变量之和的极限分布为正态分布的一系列命题的统称。它是数理统计学和误差分析的理论基础,指出了大量随机变量积累分布函数逐点收敛到正态分布的积累分布函数的条件。自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的...

2018-10-08 10:59:47

阅读数:88

评论数:0

数学狂想曲(八)——核弹当量问题, Lanchester战争模型, 随机过程

核弹当量问题 核弹爆炸由于是个复杂的过程,因此就有了爆炸火球半径、辐射半径、冲击波半径以及热辐射半径等不同的威力评价标准。 具体的介绍可参见: https://www.zhihu.com/question/20134458 一颗核弹的破坏性有多大? 这里给出几组数据: ...

2018-09-25 10:35:23

阅读数:82

评论数:0

机器学习(三十二)——t-SNE, Adaboost

t-SNE(续) SNE 在介绍t-SNE之前,我们首先介绍一下SNE(Stochastic Neighbor Embedding)的原理。 假设我们有数据集X,它共有N个数据点。每一个数据点xixix_i的维度为D,我们希望降低为d维。在一般用于可视化的条件下,d的取值为 2,即在平面...

2018-09-17 09:41:01

阅读数:91

评论数:0

语音识别(五)——Mel-Frequency Analysis, FBank, 语音识别的评价指标, 声学模型进阶

Cepstrum Analysis(续) 这里,我们对Fourier transform做一个简单的回顾。 设h(t)是一个时域函数,而H(f)是一个频域函数,则Fourier transform为: H(f)=∫∞−∞h(t)e2πiftdtH(f)=∫−∞∞h(t)e2πiftdtH...

2018-09-10 09:47:54

阅读数:490

评论数:0

语音识别(四)——DTW, Spectrogram, Cepstrum Analysis

DTW Dynamic Time Warping是Vintsiuk于1968年提出的算法。 Taras Klymovych Vintsiuk,1939~2012,乌克兰科学家,毕业于Kyiv Polytechnic Institute。模式识别专家,语音识别领域的奠基人之一。 图...

2018-09-03 10:33:20

阅读数:99

评论数:0

语音识别(三)——声学模型, 解码器技术

声源定位(续) 波束形成 声源定位的方法包括波束形成,超分辨谱估计和TDOA,分别将声源和阵列之间的关系转变为空间波束,空间谱和到达时间差,并通过相应的信息进行定位。 波束形成是通用的信号处理方法,这里是指将一定几何结构排列的麦克风阵列的各麦克风输出信号经过处理(例如加权、时延、求和等)...

2018-08-27 10:09:00

阅读数:271

评论数:0

语音识别(二)——基本框架, Microphone Array, 声源定位

基本框架 语音识别系统主要有四部分组成:信号处理和特征提取、声学模型、语言模型(Language Model, LM)和解码器(Decoder)。 信号处理和特征提取部分以音频信号为输入,通过消除噪音、信道失真等对语音进行增强,将语音信号从时域转化到频域,并为后面的声学模型提取合适的特征。...

2018-08-20 09:38:19

阅读数:708

评论数:2

语音识别(一)——概述

概述 虽然现在的语音识别中,DL已经应用的非常广泛了,但是语音识别终究还是有一些领域知识的,将之归类为DL或者ML,似乎都不妥当。特形成本系列文章,用以描述automatic speech recognition的领域知识和传统方法。 说起来还是要感谢DL,不然按照传统的行业划分,几乎不会有人...

2018-08-13 09:33:57

阅读数:439

评论数:0

图像处理理论(八)——Meanshift, Camshift, Optical flow

Meanshift Meanshift聚类 Meanshift(均值漂移)首先是个聚类算法,然后才应用到目标跟踪领域。它是Keinosuke Fukunaga和Larry D. Hostetler于1975年发明的。 Keinosuke Fukunaga,日本裔美国科学家,普渡大学...

2018-08-06 10:25:50

阅读数:155

评论数:0

图像处理理论(七)——LBP, Fisherface, Viola-Jones

LBP(续) 圆形LBP算子 基本的LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala等对LBP算子进行了改进,将3x3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,...

2018-07-30 09:38:50

阅读数:90

评论数:0

图像处理理论(六)——Harris, Eigenface

Harris 角点 角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在保留图像图形重要特征的同时,可以有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。角点在三维场景重建运动估计,目标跟踪、目标识别、图像配准与...

2018-07-23 11:09:25

阅读数:90

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭