深度学习(三十三)——GAN参考资源

GAN参考资源 https://blog.csdn.net/liuxiao214/article/category/6940697 某GAN专栏 https://mp.weixin.qq.com/s/oCDlhzjOYTIhsr5JuoRCJQ IRGAN:大一统信息检索模型的博弈竞争 https...

2019-03-18 09:14:36

阅读数 6

评论数 0

高考, 流浪地球, 医药

高考 上图是1977~2017年高考录取人数统计。从中可以看出以下事实: 1.1977年的高考是恢复高考的第一年,比改革开放要早1年,算的上是高等教育先期解冻了一步。由于通知是10月出来的,因此该年的考试实际上是12月10日开始的,也是唯一的一次冬季高考。此外,由于各省自主命题,考试时间也...

2019-03-11 10:01:23

阅读数 19

评论数 0

深度学习(三十二)——AlphaGo, AlphaStar

AlphaGo 樊麾讲解AlphaGo与李世石的五番棋: https://deepmind.com/research/alphago/alphago-games-simplified-chinese/ 论文: 《Mastering the game of Go with deep neur...

2019-02-25 10:21:42

阅读数 50

评论数 0

深度学习(三十一)——Style Transfer

Style Transfer 上图是Style Transfer问题的效果图:将图片B的风格迁移到另一张图片A上。 上图是图像风格迁移所涉及的科技树。 在继续讨论之前,我们有必要指出Style Transfer和其他传统的有监督学习的CV问题之间的差异。 1.风格这种抽象的概念,该如何定义?艺...

2019-02-18 15:29:00

阅读数 62

评论数 0

Ubuntu使用技巧(二)

Ubuntu 16.04使用手记 Ubuntu 16.04正式发布(2016.4.21)之后,我第一时间下载了下来。 平心而论,虽然厂商已经很努力,但是Ubuntu的版本升级,仍然存在诸多不兼容的问题。我的电脑最初装的是12.04,后来利用apt升级为14.04。然而,从这次的升级体验来说,不仅升...

2019-01-14 13:45:00

阅读数 63

评论数 0

区块链参考资源, 雷达 & 信号处理

区块链参考资源 https://mp.weixin.qq.com/s/bkLBaTs3pSQyYg9YgRnG8w 盘点近期区块链媒体、论坛、公号资源 https://mp.weixin.qq.com/s/hn1a9XZSu_lL5TPgq5ln2A 区域链相关资料汇总 https://mp.we...

2019-01-07 10:08:12

阅读数 9346

评论数 2

多维数组的行优先和列优先, 数据描述语言

多维数组的行优先和列优先 这里以numpy为工具,介绍一下多维数组的行优先和列优先的概念。 首先我们生成一个3x4的数组: arr = np.arange(12).reshape(3,4) 它的形状是这样的: 如果我们按照C语言的方式存储它,也就是行优先存储的话,那么在内存中,它的形状是这样的:...

2018-12-24 10:33:50

阅读数 270

评论数 0

知名数据集

知名数据集 MNIST MNIST是一个手写字符集,也是学习深度学习和SVM的入门必备数据集。目前由Yann LeCun维护。网址: http://yann.lecun.com/exdb/mnist/ MNIST是NIST的一个子集,包含了6万个训练样本和1万个测试样本。为了避免碎小文件的问题,所...

2018-12-17 09:25:42

阅读数 161

评论数 0

TensorFlow(二)

TensorFlow 控制流 tf.cond a=tf.constant(2) b=tf.constant(3) x=tf.constant(4) y=tf.constant(5) z = tf.multiply(a, b) result = tf.cond(x < y, l...

2018-12-10 09:43:06

阅读数 101

评论数 0

深度学习(三十)——Deep Speech, 自动求导

CTC 推断计算(续) 上图是一个Beam Width为3的Beam Search。Beam Search的细节可参见《机器学习(二十三)》。 由于语音的特殊性,我们实际上用的是Beam Search的一个变种: 如上图所示,所有在合并规则下,能够合并为同一前缀的分支,在后续计算中,都被认为是...

2018-11-26 09:41:57

阅读数 178

评论数 0

word2vec, LSTM Speech Recognition实战, 图数据库

word2vec word2vec是Google于2013年开源推出的一个用于获取word vector的工具包。作者是Tomas Mikolov。 Github: https://github.com/tmikolov/word2vec 注:Tomas Mikolov,捷克布尔诺科技大学博士。...

2018-11-19 10:34:13

阅读数 274

评论数 0

OpenVX, 运算加速库, NVIDIA

OpenVX Khronos Group Khronos Group是一个行业组织,创建开放标准以实现并行计算、图形、视觉、传感处理和动态媒体在各种平台和设备上的编写和加速。Khronos标准包括Vulkan, OpenGL, OpenGL ES, WebGL, OpenCL, SPIR, SYC...

2018-11-12 09:25:50

阅读数 381

评论数 0

深度学习(二十九)——Normalization进阶, CTC

Normalization进阶 和Batch Normalization类似的概念还有Weight Normalization和Layer Normalization。 Batch Normalization 从上图可以看出,BN是对input tensor的每个通道进行mini-batch级别...

2018-11-05 11:11:25

阅读数 206

评论数 0

Machine Learning之Python篇(一)

Machine Learning之Python篇 概述 教程 https://ljalphabeta.gitbooks.io/python-/content/ 《Python机器学习》中文版 https://github.com/lawlite19/MachineLearning_Python ...

2018-10-29 09:25:58

阅读数 316

评论数 0

Kaldi(一)

Kaldi Kaldi是一个语音识别的工具包。它由Daniel Povey于2009年创建。 Daniel Povey,Johns Hopkins University副教授。 个人主页: http://danielpovey.com/ 官网: https://github.com/kaldi...

2018-10-22 09:34:52

阅读数 703

评论数 0

数学狂想曲(十)——复变函数, 平稳离散时间随机过程, 功率谱

熵(续) 信息熵 信息熵和热力学熵的假设相同,因此有类似结论不足为奇,毕竟数学上都是同一个微分方程。 信息熵:编码方案完美时,最短平均编码长度的是多少。 交叉熵:编码方案不一定完美时(由于对概率分布的估计不一定正确),平均编码长度的是多少。平均编码长度=最短平均编码长度+一个增量 H(p,q)=−...

2018-10-15 09:45:40

阅读数 112

评论数 0

数学狂想曲(九)——Bézier curve, 熵

随机过程(续) 中心极限定理 中心极限定理:研究何种条件下独立随机变量之和的极限分布为正态分布的一系列命题的统称。它是数理统计学和误差分析的理论基础,指出了大量随机变量积累分布函数逐点收敛到正态分布的积累分布函数的条件。自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的...

2018-10-08 10:59:47

阅读数 137

评论数 0

数学狂想曲(八)——核弹当量问题, Lanchester战争模型, 随机过程

核弹当量问题 核弹爆炸由于是个复杂的过程,因此就有了爆炸火球半径、辐射半径、冲击波半径以及热辐射半径等不同的威力评价标准。 具体的介绍可参见: https://www.zhihu.com/question/20134458 一颗核弹的破坏性有多大? 这里给出几组数据: ...

2018-09-25 10:35:23

阅读数 170

评论数 0

机器学习(三十二)——t-SNE, Adaboost

t-SNE(续) SNE 在介绍t-SNE之前,我们首先介绍一下SNE(Stochastic Neighbor Embedding)的原理。 假设我们有数据集X,它共有N个数据点。每一个数据点xixix_i的维度为D,我们希望降低为d维。在一般用于可视化的条件下,d的取值为 2,即在平面...

2018-09-17 09:41:01

阅读数 144

评论数 0

语音识别(五)——Mel-Frequency Analysis, FBank, 语音识别的评价指标, 声学模型进阶

Cepstrum Analysis(续) 这里,我们对Fourier transform做一个简单的回顾。 设h(t)是一个时域函数,而H(f)是一个频域函数,则Fourier transform为: H(f)=∫∞−∞h(t)e2πiftdtH(f)=∫−∞∞h(t)e2πiftdtH...

2018-09-10 09:47:54

阅读数 1131

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭