2022-01-17每日刷题打卡

一、Y总视频进度

        

二、854. Floyd求最短路

(1)问题描述

        

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 kk 个询问,每个询问包含两个整数 xx 和 yy,表示查询从点 xx 到点 yy 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,kn,m,k。

接下来 mm 行,每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

接下来 kk 行,每行包含两个整数 x,yx,y,表示询问点 xx 到点 yy 的最短距离。

输出格式

共 kk 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤2001≤n≤200,
1≤k≤n21≤k≤n2
1≤m≤200001≤m≤20000,
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1
难度:简单
时/空限制:1s / 64MB
总通过数:16849
总尝试数:33722
来源:模板题
算法标签

(2)代码实现

        

import java.io.*;
import java.util.*;

class Main{
    static int N = 250;
    static int[][] g = new int[N][N];
    static int n,m;
    static int max = 0x3f3f3f3f;

    static void floyd(){
        for(int k=1; k<=n; k++){
            for(int i=1; i<=n; i++){
                for(int j=1; j<=n; j++){
                    g[i][j] = Math.min(g[i][k]+g[k][j], g[i][j]);
                }
            }
        }
    }

    public static void main(String[]args) throws IOException{
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        String[] arr = in.readLine().split(" ");
        n = Integer.parseInt(arr[0]);
        m = Integer.parseInt(arr[1]);
        int k = Integer.parseInt(arr[2]);

        for(int i=1; i<=n ;i++){
            for(int j=1; j<=n; j++){
                if(i==j) g[i][j]=0;
                else g[i][j] = max;
            }    
        }

        for(int i=0; i<m; i++){
            String[] cur = in.readLine().split(" ");
            int a = Integer.parseInt(cur[0]);
            int b = Integer.parseInt(cur[1]);
            int c = Integer.parseInt(cur[2]);

            g[a][b] = Math.min(c, g[a][b]);
        }

        floyd();

        for(int i=0; i<k; i++){
            String[] cur = in.readLine().split(" ");
            int a = Integer.parseInt(cur[0]);
            int b = Integer.parseInt(cur[1]);

            if(g[a][b] >= max/2) System.out.println("impossible");
            else System.out.println(g[a][b]);
        }
    }
}

 三、858. Prim算法求最小生成树

(1)题目描述

        

给定一个 nn 个点 mm 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E)G=(V,E),其中 VV 表示图中点的集合,EE 表示图中边的集合,n=|V|n=|V|,m=|E|m=|E|。

由 VV 中的全部 nn 个顶点和 EE 中 n−1n−1 条边构成的无向连通子图被称为 GG 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 GG 的最小生成树。

输入格式

第一行包含两个整数 nn 和 mm。

接下来 mm 行,每行包含三个整数 u,v,wu,v,w,表示点 uu 和点 vv 之间存在一条权值为 ww 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤5001≤n≤500,
1≤m≤1051≤m≤105,
图中涉及边的边权的绝对值均不超过 1000010000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6
难度:简单
时/空限制:1s / 64MB
总通过数:22592
总尝试数:38456
来源:模板题
算法标签

(2)代码实现

        

import java.util.*;
import java.io.*;

class Main{
    static int N=510;

    static int[][] g=new int[N][N];
    static int[] dist=new int[N];
    static boolean[] st=new boolean[N];
    static int max = (int)1e9;
    static int n;

    static int prime(int n){
        Arrays.fill(dist, max); //初始化所有点到集合的距离都为正无穷

        int res = 0; //用于记录最小生成树的权值
        //循环n次
        for(int i=0; i<n; i++){
            //找到距离集合最近的那个点
            int t = -1;
            for(int j=1; j<=n; j++){
                if((t==-1||dist[j]<dist[t])&&!st[j]){
                    t = j;
                }
            }

            //如果此时不是寻找的第一个点,但是所有点到集合的距离最小值为正无穷,说明不存在最小生成树
            if(i>0 && dist[t]==max) return -1;
            if(i>0) res+=dist[t];
            st[t] = true;

            //用新加进来的点去更新其它点到集合的距离
            for(int j=1; j<=n; j++){
                if(dist[j]>g[t][j]) dist[j] = g[t][j];
            }
        }
        return res;
    }

    public static void main(String[]args) throws IOException{
        BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
        String[]arr=in.readLine().split(" ");
        n=Integer.parseInt(arr[0]);
        int m=Integer.parseInt(arr[1]);

        for(int i=1;i<=n;i++) Arrays.fill(g[i],0x3f3f3f3f);

        while(m-->0){
            String[] cur=in.readLine().split(" ");
            int u=Integer.parseInt(cur[0]);
            int v=Integer.parseInt(cur[1]);
            int w=Integer.parseInt(cur[2]);

            g[u][v]=g[v][u]=Math.min(g[u][v],w);
        }

        int t=prime(n);

        if(t==-1) System.out.println("impossible");
        else System.out.println(t);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值