题目背景
无
题目描述
一只蜜蜂在下图所示的数字蜂房上爬动,已知它只能从标号小的蜂房爬到标号大的相邻蜂房,现在问你:蜜蜂从蜂房 mm 开始爬到蜂房 nn,m<nm<n,有多少种爬行路线?(备注:题面有误,右上角应为 n-1n−1)
输入格式
输入 m,nm,n 的值
输出格式
爬行有多少种路线
输入输出样例
输入 #1复制
1 14
输出 #1复制
377
说明/提示
对于100%的数据,M,N\le 1000M,N≤1000
#include <cstdio>
using namespace std;
int n,m,len=1;
int f[1005][1005];
void plus(int x)
{
for(int i=1;i<=len;i++)
f[x][i]=f[x-1][i]+f[x-2][i];
for(int i=1;i<=len;i++)
if(f[x][i]>9)
{
f[x][i+1]+=f[x][i]/10;
f[x][i]%=10;
}
if(f[x][len+1]) len++;
}
int main ()
{
scanf("%d%d",&m,&n);
f[1][1]=1,f[2][1]=2;
for(int i=3;i<=n-m;i++) plus(i);
for(int i=len;i;i--) printf("%d",f[n-m][i]);
return 0;
}
题目描述
对于一个递归函数w(a,b,c)w(a,b,c)
- 如果a \le 0a≤0 or b \le 0b≤0 or c \le 0c≤0就返回值11.
- 如果a>20a>20 or b>20b>20 or c>20c>20就返回w(20,20,20)w(20,20,20)
- 如果a<ba<b并且b<cb<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)w(a,b,c−1)+w(a,b−1,c−1)−w(a,b−1,c)
- 其它的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)w(a−1,b,c)+w(a−1,b−1,c)+w(a−1,b,c−1)−w(a−1,b−1,c−1)
这是个简单的递归函数,但实现起来可能会有些问题。当a,b,ca,b,c均为15时,调用的次数将非常的多。你要想个办法才行.
absi2011 : 比如 w(30,-1,0)w(30,−1,0)既满足条件1又满足条件2
这种时候我们就按最上面的条件来算
所以答案为1
输入格式
会有若干行。
并以-1,-1,-1−1,−1,−1结束。
保证输入的数在[-9223372036854775808,9223372036854775807][−9223372036854775808,9223372036854775807]之间,并且是整数。
输出格式
输出若干行,每一行格式:
w(a, b, c) = ans
注意空格。
输入输出样例
输入 #1复制
1 1 1 2 2 2 -1 -1 -1
输出 #1复制
w(1, 1, 1) = 2 w(2, 2, 2) = 4
说明/提示
记忆化搜索
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll rpt[25][25][25];
ll w(ll a,ll b,ll c)
{ if(a<=0||b<=0||c<=0) return 1;
else if(rpt[a][b][c]!=0) return rpt[a][b][c];
else if(a>20||b>20||c>20) rpt[a][b][c]=w(20,20,20);
else if(a<b&&b<c) rpt[a][b][c]=w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);
else rpt[a][b][c]=w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);
return rpt[a][b][c];
}
int main()
{
ll a,b,c;
while(scanf("%lld%lld%lld",&a,&b,&c)==3){
memset(rpt,0,sizeof(rpt)); //memset() 函数可以说是初始化内存的“万能函数”。
if(a==-1&&b==-1&&c==-1) break;
printf("w(%lld, %lld, %lld) = ",a,b,c);
if(a>20) a=21;//在函数中比20大也会返回w(20,20,20);
if(b>20) b=21;
if(c>20) c=21;
printf("%lld\n",w(a,b,c));
}
return 0;