- 博客(18)
- 收藏
- 关注
原创 m1芯片mac为2K显示器开启hidpi
搬运工:waydabber/BetterDummy: Software Dummy Display Adapter for Apple Silicon Macs to Have Custom HiDPI Resolutions. (github.com)https://github.com/waydabber/BetterDummy下载软件:Releases · waydabber/BetterDummy (github.com)https://github.com/waydabber/BetterD.
2021-11-01 09:40:32 3594 1
原创 用elsevier的Latex双栏模板图片caption标题无法左对齐
问题描述:在投稿论文的过程中,使用elsevier的cas-dc模板,单栏图片可以很好的显示,但是遇到跨栏的图片\caption不会自动左对齐。如下所示,跨栏图片的标题显示不正常。\caption出现在中间位置,这并不是我们想要的,网上找资料,然后发现是[htbp] 命令导致的异常,将代码中的[htbp] 命令注释掉即可。然后可以发现得到了想要的显示。...
2020-08-03 11:03:41 6728 10
原创 MacOS 10.13.6安装cuda+cudann+pytorch的gpu版本
疫情在家炼丹,远程连接实验室实在是不太方便,随意准备用家里的电脑代替,虽然配置不能打,但是写写代码跑跑事例的还是可以的,由于所有的资料文件我都在手里的MacBook里面,所有准备弄一套macOS的黑苹果环境,系统装好后,就是装驱动了,具体如下:注意:由于黑苹果对驱动要求严格,且在macOS High Sierra 10.13.6之后NVIDIA不在对显卡驱动进行支持,所以Mac的版本选择在10.13.6,所有的安装总体分为两部分,第一是cuda相关的安装,第二是pytorch的gpu版本的安装。.
2020-06-08 18:07:22 12732 5
原创 Keras多次加载模型进行测试时内存溢出的解决方法
在进行实验的过程中,保存了每个epoch的模型参数文件,需要验证每个保存的模型的效果,想到直接简单粗暴的手法,就是一个循环里加载模型并进行验证,但是导致随着加载的模型越来越多,速度越来越慢。方法如下:在每次加载模型之前,清空模型占用的内存即可。import tensorflow as tffrom keras import backend as KK.clear_session()tf.reset_default_graph()‘’‘加载模型位置’‘’更多内容信息,可以参见官...
2020-05-20 11:08:29 2333 1
原创 Python-ndarray格式下三维转二维的解决方法记录
今天在做GAN实验的时候,需要将原本的三维图像中第三维去掉。方便后续可视化相关的处理。举例来说,原本是image.shape=(255,255,1),灰度图第三维占位。转换成imageNew = (255, 255).网上找了一些方法,贴出两种我试过能用的方法:首先,仿造生成shape=(3,3,1)的样本。a = [[[1,2,3],[4,5,6],[7,8,9]]]a_array...
2020-03-21 01:08:26 4903
原创 cannot import name fetch_mldata 报错及解决方法
从scikit-learn下面下载mnist数据集from sklearn.datasets import fetch_mldatamnist = fetch_mldata('MNIST original')报错:cannot import name 'fetch_mldata'版本问题,将scikit-learn版本降为0.19就可以了。...
2020-03-16 20:34:27 7189 5
原创 ubuntu下出现`pydot` failed to call GraphViz 的问题描述及解决方法。
问题出现代码:`pydot` failed to call GraphViz.Please install GraphViz (https://www.graphviz.org/) and ensure that its executables are in the $PATH.出现问题描述:实验代码里有需要用到可视化的包,根据提示安装pydot和graphviz之后发现出现上述...
2020-03-13 11:38:35 324
原创 Docker环境下安装Anaconda的教程及注意事项
博主需要在远程ubuntu下面跑深度学习,众所周知,搭深度学习的环境非常耗费时间和精力,所以我选择了口碑比较好的docker容器配置环境,期间过程很顺利,但是遇到在docker下安装包时,因为没有安装anaconda,很多依赖包无法自动安装,Conda 安装 Python 包时,会附带安装各种用于硬件加速、协同的依赖包,在代码运行上更为快速、友好。一、前期准备在此之前,我们需要在自己和远程...
2020-03-12 22:40:01 14214
原创 机器学习要点理解(四、随机森林)
一、随机森林的基本思想Bagging思想,bootstrap aggregating,思想就是从总体样本当中随机取一部分样本进行训练,通过多次这样的结果,进行投票获取平均值作为结果输出,这就极大可能的避免了不好的样本数据,从而提高准确度。随机森林采用Bagging思想,重复采样,生成多棵树。二、随机森林生成规则1、数据集为N,随机从数据集里采样N个(与数据集大小相同)训练样本,作为一棵树训...
2020-03-11 11:56:57 1469
原创 论文要点记录与理解:《GAN综述:算法、理论及应用》
论文来自https://arxiv.org/pdf/2001.06937.pdf《GAN综述:算法、理论及应用》
2020-03-10 21:20:38 387
原创 机器学习要点理解(三、决策树)
决策树的基本思想:对每一个特征做if-else的条件判断,与逻辑回归不一样(逻辑回归是把所有特征丢进网络),入门的案例有泰坦尼克号存活预测。决策树的两个问题:决策树是怎么”长“的?—分裂属性的选择,即在某个结点上选择哪个特征进行划分呢,不同的算法造就不同的树,例如ID3, C4.5, CART树。这棵树什么时候”停“?—树剪枝。当子节点包含的样本数域同一个类型时;当前结点包含的样...
2020-03-10 15:25:16 247
原创 机器学习要点理解(二、逻辑回归)
逻辑回归是做分类任务的,是在线性回归的基础上加上例如sigmoid函数,是的取值从[-∞, +∞]变为[0,1]。并按照区间进行分类。sigmoid函数S(t)=11+e−tS(t)=\frac{1}{1+e^{-t}}S(t)=1+e−t1逻辑回归的函数:对数似然函数,同样是按照梯度下降法,最小化损失函数得到模型参数。S(t)=−y∗log(p)−(1−y)∗log(1...
2020-03-09 15:22:57 202
原创 机器学习要点理解(一、线性回归)
线性回归的定义:线性而不是非线性,线性在表示元素关系在图像上表示为一条直线,非线性则不是直线;回归,多次的测量值通过方式计算,实现对真实值的逼近。 线性回归的方法: 通过任务构造相应的损失函数; 利用梯度下降法最小化损失函数,找到相模型相应的参数。 正则化项:解决模型的过拟合和欠拟合,一般有L1,L2正则化,L1,L2正则化项是施加在参数上,对模型的参数更新进行限制,L1正则化是对参...
2020-03-09 14:30:03 170
原创 关于在pycharm下选择docker为interpreter的一个问题及解决方法
当我在docker搭建完成之后,配置pycharm时,如下图,点击OK后,出现错误。错误提示:com.github.dockerjava.api.exception.BadRequestException: {"message":"OCI runtime create failed: container_linux.go:345: starting container process ...
2019-08-13 13:53:50 2327 3
原创 基于Ubuntu官方镜像利用commit制作自己的镜像并上传docker hub
前几天因为学习要求接触到了docker这个东西,遇到的问题就是下载别人的镜像供自己使用总是有点不方便,于是乎就像自己搞一个适合自己的镜像,今天摸索了一番,成功创建了一个自己的镜像,遂将过程记录下来以供参考。博主电脑系统:Ubuntu18.04备注:整个过程可能会遇到进不去相关的镜像或者容器,可以使用docker stop/start相关命令先关闭再开启镜像或容器。一、制作自己的镜像...
2019-08-12 20:15:57 842
原创 利用docker环境配置jupyter notebook进行学习
昨天想着用jupyter notebook咱anaconda虚拟环境下进行深度学习,然后配置完之后(想要配置的话可以参见我的这篇教程在anaconda虚拟环境下使用jupyter noterbook进行开发教程),装环境的时候有的包下载速度真的不尽如人意,所以就想着用docker来配置jupyter notebook,毕竟这docker只要一次配置,怎么玩都可以,省了配置环境的苦,还是阔以滴。...
2019-08-09 16:26:21 1513
原创 在anaconda虚拟环境下使用jupyter noterbook进行开发教程
由于这段时间和今后的实验需要用到tensorflow,其中可视化这一部分又对模型的理解非常有帮助,故在这里记录下自己学习的过程。电脑系统为Ubuntu18.04搭建conda虚拟环境Python、anaconda的安装自行网上找,相关教程很多。这里我是用anaconda下jupyter notebook配合使用,因为这个东西吧,简单直观,一条一条过,逻辑清晰合理。另外为了不影响其他的程...
2019-08-09 09:41:57 641 1
原创 from __future__ import print_function 的作用
今天在读莫凡Python的教程代码,在TensorFlow教程里看到了一下用法,from __future__ import print_function。其实这句函数之后,即使在低版本的python2.X,当使用print函数时,须python3.X那样加括号使用。tips:python2.X中print不需要括号,而在python3.X中则需要。# python3.xprint("he...
2019-05-15 21:55:06 9312
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人