机器学习
文章平均质量分 52
使用python的pytorch库
安心不心安
自己所学的都会发博客,如果对你有用 可以点个关注
展开
-
CUDA和显卡驱动
由于我的显卡是RTX4060,因此先选择RTX40系列,然后选择RTX4060,进行安装。原创 2024-05-03 15:32:59 · 603 阅读 · 0 评论 -
pytorch实现GoogLeNet
GoogLeNet(也称为Inception)是由谷歌公司的研究团队于2014年提出的深度卷积神经网络模型。它在ImageNet大规模视觉识别竞赛(ILSVRC)中取得了突出的成绩,在计算机视觉领域引起了广泛的关注。GoogLeNet的名字来源于其创新的Inception模块,该模块采用多个不同尺寸的卷积核进行特征提取,并将这些特征在通道维度上进行拼接,从而能够捕捉多尺度的图像特征。相比于传统的串行结构,Inception模块的并行操作大大减少了参数数量,提高了网络的效率和性能。原创 2023-08-31 15:21:57 · 294 阅读 · 0 评论 -
pytorch实现VGG
VGG是一种深度卷积神经网络,由牛津大学视觉几何组(Visual Geometry Group)的Simonyan和Zisserman于2014年提出。它在ImageNet大规模图像识别挑战赛中取得了显著的成果,并成为深度学习领域的重要里程碑之一。VGG的特点是网络结构简单、层次清晰。它通过堆叠多个较小尺寸的卷积核和池化层来代替更大尺寸的卷积核,从而减少网络参数的数量。VGG网络具有较深的结构,可以通过增加卷积层和池化层的堆叠数量来调整网络的深度。原创 2023-08-31 15:17:27 · 144 阅读 · 0 评论 -
pytorch实现AlexNet
AlexNet是一种深度卷积神经网络,由Alex Krizhevsky等人在2012年提出。它在ImageNet大规模图像识别挑战赛(ImageNet Large-Scale Visual Recognition Challenge,ILSVRC)中取得了突破性的成果,极大地推动了深度学习的发展。AlexNet是第一个在深度学习领域引起广泛关注的卷积神经网络。相比于传统的浅层网络,AlexNet通过增加网络深度和参数量,使用更多的隐藏层,使得网络能够学习到更复杂的特征表示。原创 2023-08-31 15:14:14 · 92 阅读 · 0 评论 -
pytorch实现Lenet
LeNet是一种经典的卷积神经网络(Convolutional Neural Network,CNN),也被称为LeNet-5。它由Yann LeCun等人在1998年提出,是用于手写数字识别任务的早期深度学习模型。LeNet网络结构相对简单,主要由卷积层、池化层和全连接层组成。它的主要特点是通过多层卷积和池化操作对输入进行特征提取,并使用全连接层进行分类。LeNet在当时取得了很好的效果,奠定了卷积神经网络在计算机视觉领域的基础。它的设计和思想对之后更复杂的深度学习模型的发展有着重要影响。原创 2023-08-31 15:08:55 · 208 阅读 · 0 评论 -
MX150显卡笔记本运行 torch.cuda.device_count() 显示 0
这段时间在某站上跟着“跟李沐学AI”博主学习Pytorch,马上学习到神经网络,众所周知,神经网络最好使用GPU来进行运作,但是电脑虽然有GPU但是不能使用。虽然电脑上有GPU,但是却显示GPU数量为0。可以看到,电脑上是有GPU的,但是出现了下述情况。原创 2023-06-25 17:28:23 · 681 阅读 · 0 评论