数学建模
文章平均质量分 59
数学建模matlab和python代码
安心不心安
自己所学的都会发博客,如果对你有用 可以点个关注
展开
-
matlab部分代码合集
【代码】matlab部分代码合集。原创 2023-09-10 21:07:37 · 1816 阅读 · 0 评论 -
数学建模matlab实现多元线性回归
此外,多元线性回归还提供了其他有用的统计信息,如显著性检验、置信区间和可决系数(R-squared)等,以评估模型的拟合程度和自变量的统计显著性。其中,y 是因变量,x1, x2, ..., xn 是自变量,β0, β1, β2, ..., βn 是回归系数(也称为斜率),ε 是误差项。多元线性回归被广泛应用于各个领域,如经济学、社会科学、工程等,用于预测、分析和解释因变量与多个自变量之间的关系。在多元线性回归中,我们考虑多个自变量的影响,并试图找到一条最佳拟合直线(或超平面),以最小化因变量的预测误差。原创 2023-07-04 09:10:53 · 1928 阅读 · 0 评论 -
数学建模matlab实现逐步回归
R方=0.975284>0.9可知拟合效果较好。可见拟合效果还行,误差较小。原创 2023-07-02 14:52:20 · 1281 阅读 · 0 评论 -
数学建模matlab实现一元线性回归
一元线性回归是统计学中用于建立一个自变量(或称为解释变量、预测变量)和一个因变量(或称为响应变量、被预测变量)之间的线性关系的回归模型。其中,y 是因变量,x 是自变量,β0 和 β1 分别是回归方程的截距和斜率,ε 是误差项,代表因变量中未能被自变量完全解释的部分。一元线性回归在实际应用中具有广泛的应用,例如经济学中的消费者支出与收入的关系分析、工程学中的产量与时间的关系分析等。一元线性回归的目标是通过已知的自变量和因变量的样本数据,拟合出最佳的回归线,以便预测未知样本的因变量。原创 2023-07-02 14:21:19 · 2014 阅读 · 0 评论 -
数学建模matlab实现灰色预测
需要注意的是,灰色系统预测在预测过程中对数据序列的样本量要求相对较低,但也容易受到数据质量和数据特征的影响。因此,在应用灰色系统预测时,需要合理处理数据、选择适当的灰色发展模型,并结合实际情况对预测结果进行分析和评估。灰色系统预测(Grey System Forecasting)是一种基于灰色理论的预测方法,适用于数据样本较少、信息不完全或者缺乏足够的先验知识的情况。预测与评估:基于建立的灰色发展模型,进行未来趋势的预测。根据模型的预测结果和可靠性评估,得出对未来趋势的预测和判断。原创 2023-07-02 14:14:46 · 553 阅读 · 0 评论 -
数学建模matlab实现层次分析法(AHP)
它通过对问题进行层次化结构化,将复杂的决策问题分解为多个层次,并对各个层次的因素进行比较和权重的确定,最终得出决策结果。层次分析法能够有效地处理具有多个因素和多个层次的复杂决策问题,它提供了一种量化的决策方法,并且可以结合专家的经验和主观判断进行权衡。两两比较:在每个层次下,通过两两比较各个因素或准则之间的重要程度,使用专家判断或者问卷调查等方式,构建一个判断矩阵。层次结构:将复杂的决策问题分解为多个层次,从目标层次到准则层次,再到备选方案层次,形成一个层次化的结构。通常采用特征向量法或特征值法进行计算。原创 2023-07-02 13:53:22 · 766 阅读 · 0 评论