Flink学习笔记(6)——时间语义与Wartmark及EventTime在Window中的使用

Flink中的时间语义

Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。
Ingestion Time:是数据进入Flink的时间。
Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。
在这里插入图片描述

例子

某些应用场合,不应该使用 Processing Time,Event Time 可以从日志数据的时间戳(timestamp)中提取
在这里插入图片描述
例如,一条日志进入Flink的时间为2017-11-12 10:00:00.123,到达Window的系统时间为2017-11-12 10:00:01.234,日志的内容如下:

2017-11-02 18:37:15.624 INFO Fail over to rm2

对于业务来说,要统计1min内的故障日志个数,哪个时间是最有意义的?—— eventTime,因为我们要根据日志的生成时间进行统计。
在这里插入图片描述

EventTime的引入

在Flink的流式处理中,绝大部分的业务都会使用eventTime,一般只在eventTime无法使用时,才会被迫使用ProcessingTime或者IngestionTime。如果要使用EventTime,那么需要引入EventTime的时间属性,引入方式如下所示:

val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给env创建的每一个stream追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

在这里插入图片描述

Watermark的产生背景

我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的,虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、分布式等原因,导致乱序的产生,所谓乱序,就是指Flink接收到的事件的先后顺序不是严格按照事件的Event Time顺序排列的。
在这里插入图片描述
那么此时出现一个问题,一旦出现乱序,如果只根据eventTime决定window的运行,我们不能明确数据是否全部到位,但又不能无限期的等下去,此时必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了,这个特别的机制,就是Watermark。
在这里插入图片描述

水位线(Watermark)

  1. Watermark是一种衡量Event Time进展的机制。
  2. Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark机制结合window来实现。
  3. 数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经到达了,因此,window的执行也是由Watermark触发的。
  4. Watermark可以理解成一个延迟触发机制,我们可以设置Watermark的延时时长t,每次系统会校验已经到达的数据中最大的maxEventTime,然后认定eventTime小于maxEventTime - t的所有数据都已经到达,如果有窗口的停止时间等于maxEventTime – t,那么这个窗口被触发执行。
  5. watermark 用来让程序自己平衡延迟和结果正确性

有序流的Watermarker如下图所示:(Watermark设置为0)
在这里插入图片描述
乱序流的Watermarker如下图所示:(Watermark设置为2)
在这里插入图片描述
小结:
在这里插入图片描述

WaterMark的特点

  1. watermark 是一条特殊的数据记录
  2. watermark 必须单调递增,以确保任务的事件时间时钟在向前推进,而不是在后退
  3. watermark 与数据的时间戳相关
    在这里插入图片描述

WaterMark的传递

在这里插入图片描述

  1. 图一,当前Task有四个上游Task给自己传输WaterMark信息,通过比较,只取当前最小值作为自己的本地Event-time clock,上图中,当前Task[0,2)的桶就可关闭了,因为所有上游中2s最小,能保证2s的WaterMark是准确的(所有上游Watermark都已经>=2s)。这时候将Watermark=2广播到当前Task的下游。
  2. 图二,上游的Watermark持续变动,此时Watermark=3成为新的最小值,更新本地Task的event-time clock,同时将最新的Watermark=3广播到下游
  3. 图三,上游的Watermark虽然更新了,但是当前最小值还是3,所以不更新event-time clock,也不需要广播到下游
  4. 图四,和图二同理,更新本地event-time clock,同时向下游广播最新的Watermark=4

WaterMark引入

Event Time的使用一定要指定数据源中的时间戳。否则程序无法知道事件的事件时间是什么(数据源里的数据没有时间戳的话,就只能使用Processing Time了)

dataStream.assignTimestampsAndWatermarks( new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.milliseconds(1000)) {
  @Override
  public long extractTimestamp(element: SensorReading): Long = { 
    return element.getTimestamp() * 1000L;
  } 
});

TimestampAssigner

AssignerWithPeriodicWatermarks:

  1. 周期性的生成 watermark:系统会周期性的将 watermark 插入到流中
  2. 默认周期是200毫秒,可以使用 ExecutionConfig.setAutoWatermarkInterval() 方法进行设置
  3. 升序和前面乱序的处理 BoundedOutOfOrderness ,都是基于周期性 watermark 的。

AssignerWithPunctuatedWatermarks :

  1. 没有时间周期规律,可打断的生成 watermark

Watermark的设定

  • 在Flink中,Watermark由应用程序开发人员生成,这通常需要对相应的领域有一定的了解
  • 如果Watermark设置的延迟太久,收到结果的速度可能就会很慢,解决办法是在水位线到达之前输出一个近似结果
  • 如果Watermark到达得太早,则可能收到错误结果,不过Flink处理迟到数据的机制可以解决这个问题

一般大数据场景都是考虑高并发情况,所以一般使用周期性生成Watermark的方式,避免频繁地生成Watermark。

注:一般认为Watermark的设置代码,在里Source步骤越近的地方越合适。

测试代码

单个并行度

public class WindowTest3_EventTimeWindow {
  public static void main(String[] args) throws Exception {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(1);
    // Flink1.12.X 已经默认就是使用EventTime了,所以不需要这行代码
    //        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
    env.getConfig().setAutoWatermarkInterval(100);

    // socket文本流
    DataStream<String> inputStream = env.socketTextStream("localhost", 7777);

    // 转换成SensorReading类型,分配时间戳和watermark
    DataStream<SensorReading> dataStream = inputStream.map(line -> {
      String[] fields = line.split(",");
      return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
    })
      //              
      //                // 旧版 (新版官方推荐用assignTimestampsAndWatermarks(WatermarkStrategy) )
      // 升序数据设置事件时间和watermark
      //.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<SensorReading>() {
      //  @Override
      //  public long extractAscendingTimestamp(SensorReading element) {
      //    return element.getTimestamp() * 1000L;
      //  }
      //})
      
      // 旧版 (新版官方推荐用assignTimestampsAndWatermarks(WatermarkStrategy) )
      // 乱序数据设置时间戳和watermark
      .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {
        @Override
        public long extractTimestamp(SensorReading element) {
          return element.getTimestamp() * 1000L;
        }
      });

    OutputTag<SensorReading> outputTag = new OutputTag<SensorReading>("late") {
    };

    // 基于事件时间的开窗聚合,统计15秒内温度的最小值
    SingleOutputStreamOperator<SensorReading> minTempStream = dataStream.keyBy("id")
      .timeWindow(Time.seconds(15))
      .allowedLateness(Time.minutes(1))
      .sideOutputLateData(outputTag)
      .minBy("temperature");

    minTempStream.print("minTemp");
    minTempStream.getSideOutput(outputTag).print("late");

    env.execute();
  }
}

并行任务Watermark传递测试

在前面代码的基础上,修改执行环境并行度为4,进行测试

public class WindowTest3_EventTimeWindow {
  public static void main(String[] args) throws Exception {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    env.setParallelism(4);

    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
    env.getConfig().setAutoWatermarkInterval(100);

    // socket文本流
    DataStream<String> inputStream = env.socketTextStream("localhost", 7777);

    // 转换成SensorReading类型,分配时间戳和watermark
    DataStream<SensorReading> dataStream = inputStream.map(line -> {
      String[] fields = line.split(",");
      return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
    })
      
      // 乱序数据设置时间戳和watermark
      .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {
        @Override
        public long extractTimestamp(SensorReading element) {
          return element.getTimestamp() * 1000L;
        }
      });

    OutputTag<SensorReading> outputTag = new OutputTag<SensorReading>("late") {
    };

    // 基于事件时间的开窗聚合,统计15秒内温度的最小值
    SingleOutputStreamOperator<SensorReading> minTempStream = dataStream.keyBy("id")
      .timeWindow(Time.seconds(15))
      .allowedLateness(Time.minutes(1))
      .sideOutputLateData(outputTag)
      .minBy("temperature");

    minTempStream.print("minTemp");
    minTempStream.getSideOutput(outputTag).print("late");

    env.execute();
  }
}

输入数据:

sensor_1,1547718199,35.8
sensor_6,1547718201,15.4
sensor_7,1547718202,6.7
sensor_10,1547718205,38.1
sensor_1,1547718207,36.3
sensor_1,1547718211,34
sensor_1,1547718212,31.9
sensor_1,1547718212,31.9
sensor_1,1547718212,31.9
sensor_1,1547718212,31.9

输出:

注意:上面输入全部输入后,才突然有下面4条输出!

minTemp:2> SensorReading{id='sensor_10', timestamp=1547718205, temperature=38.1}
minTemp:3> SensorReading{id='sensor_1', timestamp=1547718199, temperature=35.8}
minTemp:4> SensorReading{id='sensor_7', timestamp=1547718202, temperature=6.7}
minTemp:3> SensorReading{id='sensor_6', timestamp=1547718201, temperature=15.4}

分析:

  • 计算窗口起始位置Start和结束位置End
    从TumblingProcessingTimeWindows类里的assignWindows方法,我们可以得知窗口的起点计算方法如下: 窗 口 起 点 s t a r t = t i m e s t a m p − ( t i m e s t a m p − o f f s e t + W i n d o w S i z e ) 窗口起点start = timestamp - (timestamp -offset+WindowSize) % WindowSize start=timestamp(timestampoffset+WindowSize) 由于我们没有设置offset,所以这里start=第一个数据的时间戳1547718199-(1547718199-0+15)%15=1547718195

    计算得到窗口初始位置为Start = 1547718195,那么这个窗口理论上本应该在1547718195+15的位置关闭,也就是End=1547718210。

    @Override
    public Collection<TimeWindow> assignWindows(
      Object element, long timestamp, WindowAssignerContext context) {
      final long now = context.getCurrentProcessingTime();
      if (staggerOffset == null) {
        staggerOffset =
          windowStagger.getStaggerOffset(context.getCurrentProcessingTime(), size);
      }
      long start =
        TimeWindow.getWindowStartWithOffset(
        now, (globalOffset + staggerOffset) % size, size);
      return Collections.singletonList(new TimeWindow(start, start + size));
    }
    
    // 跟踪 getWindowStartWithOffset 方法得到TimeWindow的方法
    public static long getWindowStartWithOffset(long timestamp, long offset, long windowSize) {
      return timestamp - (timestamp - offset + windowSize) % windowSize;
    }
    
  • 为什么上面输入中,最后连续四条相同输入,才触发Window输出结果?

    1)Watermark会向子任务广播

    • 我们在map才设置Watermark,map根据Rebalance轮询方式分配数据。所以前4个输入分别到4个slot中,4个slot计算得出的Watermark不同(分别是1547718199-2,1547718201-2,1547718202-2,1547718205-2)

    2)Watermark传递时,会选择当前接收到的最小一个作为自己的Watermark

    • 前4次输入中,有些map子任务还没有接收到数据,所以其下游的keyBy后的slot里watermark就是Long.MIN_VALUE(因为4个上游的Watermark广播最小值就是默认的Long.MIN_VALUE)
    • 并行度4,在最后4个相同的输入,使得Rebalance到4个map子任务的数据的currentMaxTimestamp都是1547718212,经过getCurrentWatermark()的计算(currentMaxTimestamp-maxOutOfOrderness),4个子任务都计算得到watermark=1547718210,4个map子任务向4个keyBy子任务广播watermark=1547718210,使得keyBy子任务们获取到4个上游的Watermark最小值就是1547718210,然后4个KeyBy子任务都更新自己的Watermark为1547718210。

原文地址:https://blog.csdn.net/qq_40180229/article/details/106363815

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值