描述
平面上有一个大矩形,其左下角坐标(0,0),右上角坐标(R,R)。大矩形内部包含一些小矩形,小矩形都平行于坐标轴且互不重叠。所有矩形的顶点都是整点。要求画一根平行于y轴的直线x=k(k是整数) ,使得这些小矩形落在直线左边的面积必须大于等于落在右边的面积,且两边面积之差最小。并且,要使得大矩形在直线左边的的面积尽可能大。注意:若直线穿过一个小矩形,将会把它切成两个部分,分属左右两侧。
输入
第一行是整数R,表示大矩形的右上角坐标是(R,R) (1 <= R <= 1,000,000)。
接下来的一行是整数N,表示一共有N个小矩形(0 < N <= 10000)。
再接下来有N 行。每行有4个整数,L,T, W 和 H, 表示有一个小矩形的左上角坐标是(L,T),宽度是W,高度是H (0<=L,T <= R, 0 < W,H <= R). 小矩形不会有位于大矩形之外的部分。
输出
输出整数n,表示答案应该是直线 x=n。 如果必要的话,x=R也可以是答案。
样例输入
1000 2 1 1 2 1 5 1 2 1
样例输出
5
1 #include<iostream> //矩形分割 2 using namespace std; 3 long long x1[10005],x2[10005],y1[10005],w[10005],h[10005],s[10005]; //x1 储存小矩形左上角坐标 x2 存小矩形右上角坐标 y1 小矩形左上角纵坐标值 w h s 分别为 宽度,长度,高度 4 long long R,N,ans; 5 long long f(long long x) //运算函数 运算左右两边相差面积 6 { 7 long long sum=0; 8 for(long long i=1;i<=N;i++){ //面积运算 分别为 全在左 全在右 在中间 9 if(x2[i]<=x){ 10 sum+=s[i];continue; 11 } 12 else if(x1[i]>=x){ 13 sum-=s[i];continue; 14 } 15 else { 16 sum=sum+(x-x1[i])*h[i]-(x2[i]-x)*h[i]; 17 } 18 } 19 return sum; 20 } 21 void work(long long l,long long r) //二分函数 进行二分递归运算 22 { 23 if(l==r){ //边界值 返回条件 24 ans=l; 25 return ; 26 } 27 long long mid=(l+r)/2; 28 if( f(mid)>=0 ) work(l,mid); //二分递归 29 else work(mid+1,r); 30 } 31 int main() //主函数 32 { 33 cin>>R; 34 cin>>N; 35 for(long long i=1;i<=N;i++){ 36 cin>>x1[i]>>y1[i]>>w[i]>>h[i]; 37 x2[i]=x1[i]+w[i]; 38 s[i]=w[i]*h[i]; 39 } 40 work(0,R); 41 while(f(ans)==f(ans+1)&&ans<R) ans++; 42 cout<<ans<<endl; 43 return 0; 44 }