P8646 [蓝桥杯 2017 省 AB] 包子凑数
题目描述
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有 NNN 种蒸笼,其中第 iii 种蒸笼恰好能放 AiA_iAi 个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买 XXX 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 XXX 个包子。比如一共有 333 种蒸笼,分别能放 333 、 444 和 555 个包子。当顾客想买 111111 个包子时,大叔就会选 222 笼 333 个的再加 111 笼 555 个的(也可能选出 111 笼 333 个的再加 222 笼 444 个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有 333 种蒸笼,分别能放 444 、 555 和 666 个包子。而顾客想买 777 个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入格式
第一行包含一个整数 NNN。(1≤N≤100)(1 \le N \le 100)(1≤N≤100)。
以下 NNN 行每行包含一个整数 AiA_iAi。(1≤Ai≤100)(1 \le A_i \le 100)(1≤Ai≤100)。
输出格式
一个整数代表答案。如果凑不出的数目有无限多个,输出 INF。
输入输出样例 #1
输入 #1
2
4
5
输出 #1
6
输入输出样例 #2
输入 #2
2
4
6
输出 #2
INF
说明/提示
对于样例 111,凑不出的数目包括:1,2,3,6,7,111,2,3,6,7,111,2,3,6,7,11。
对于样例 222,所有奇数都凑不出来,所以有无限多个。
蓝桥杯 2017 省赛 A 组 H 题。
--------------------------------------------------------------------------------------
思路
其中 x就是我们要凑的数,A为包子数,K为包子笼数

令g为A1,A2…An的最大公约数
上式为

则可以看到x是最大公约数g的倍数,则当g>1时则有无穷多凑不出来的数字
所以
首先判断最大公约数g是否>1
然后动态规划,把所有关于Ai的线性组合求出来
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int mgcd(int n,int m)
{
while(m)
{
int tmp=m;
m=n%m;
n=tmp;
}
return n;
}
ll n;
ll arr[105];
ll dp[100005];
int main(void)
{
cin>>n;
for(int i=0;i<n;i++)
cin>>arr[i];
int g=mgcd(arr[0],arr[1]);
for(int i=2;i<n;i++)
{
g=mgcd(g,arr[i]);
}
if(g>1)
{
cout<<"INF";
return 0;
}
dp[0]=1;
for(int i=0;i<n;i++)
{
for(int j=arr[i];j<100005;j++)
{
//若dp[j-arr[i]]能求出来 那么dp[j]通过加上Ai也能求出来
dp[j]=max(dp[j],dp[j-arr[i]]);
}
}
ll ans=0;
for(int i=0;i<100005;i++)
{
if(dp[i]==0)
{
ans++;
}
}
cout<<ans;
return 0;
}
3609

被折叠的 条评论
为什么被折叠?



