组合数问题(zyys版)

【问题描述】
定义"组合数"S(n,m)代表将 n 个不同的元素拆分成 m 个非空集合的方案
数.举个栗子,将{1,2,3}拆分成 2 个集合有({1},{2,3}),({2},{1,3}),({3},{1,2})三种拆分
方法.
小猫想知道,如果给定 n,m 和 k,对于所有的 0<=i<=n,0<=j<=min(i,m),有多少对
(i,j),满足 S(i,j)是 k 的倍数.
注意,0 也是 k 的倍数,S(0,0)=1,对于 i>=1,S(i,0)=0.
【输入格式】
从 problem.in 种读入数据
第一行有两个整数 t,k,t 代表该测试点总共有多少组测试数据.
接下来 t 行,每行两个整数 n,m.
【输出格式】
输出到文件 problem.out 中
t 行,每行一个整数代表所有的 0<=i<=n,0<=j<=min(i,m),有多少对(i,j),满足 S(i,j)
是 k 的倍数.
【样例输入 1】
12
33
【样例输出 1】
3
【样例说明 1】
S(1,0),S(2,0),S(3,0)均是 2 的倍数
【样例输入 2】
25
45
67
【样例输出 2】
4
12
【数据规模与约定】
对于 20%的数据,满足 n,m<=7,k<=5
对于 60%的数据,满足 n,m<=100,k<=10
对于每个子任务,都有 50%的数据满足 t=1
对于 100%的数据,满足 1<=n<=2000,1<=m<=2000,2<=k<=21,1<=t<=10000

斯特林数(II)

S[i][j]=S[i-1][j-1]+j*S[i-1][j]

解释一下:

对于i,j,它可以单独构成j集合,前面要有j-1个集合

也可以放入前面的集合

因为集合非空,所以前面的集合要有j个,有j种选择

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 int k,t,n,m;
 7 long long S[2001][2001],a[2001][2001];
 8 int main()
 9 {int i,j;
10   cin>>t>>k;
11   S[0][0]=1;
12   for (i=1;i<=2000;i++)
13     {
14       S[i][0]=0;
15       for (j=1;j<=i;j++)
16     {
17       S[i][j]=(S[i-1][j-1]+S[i-1][j]*j)%k;
18     }
19     }
20   for (i=0;i<=2000;i++)
21     {
22       for (j=0;j<=i;j++)
23     {
24       if (S[i][j]==0)
25         a[i][j]=1;
26     }
27     }
28   for (i=1;i<=2000;i++)
29     {
30       for (j=1;j<=2000;j++)
31     a[i][j]+=a[i][j-1];
32     }
33   for (i=1;i<=2000;i++)
34     {
35       for (j=0;j<=2000;j++)
36     a[i][j]+=a[i-1][j];
37     }
38   while (t--)
39     {
40       scanf("%d%d",&n,&m);
41       printf("%lld\n",a[n][m]);
42     }
43 }

 

转载于:https://www.cnblogs.com/Y-E-T-I/p/7615051.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值