numba,一个强大的 python 库

今天给大家分享一个强大的 python 库,numba

https://github.com/numba/numba

Pandas 是 Python 中流行的数据分析库。然而,随着数据集大小的增长,原生 Python 代码对于滚动窗口计算等关键操作可能会变得很慢。这就是 Numba 用武之地。

Numba 是 Python 的即时编译器,可在运行时将 Python 代码转换为机器代码

Numba 可用于加速 Python 函数,而无需编写任何 C 或 C++ 代码。

在本文中,我们将探讨如何利用 Numba 加速常见的 Pandas 工作流程,例如滚动统计。‍

你将了解启用 Numba 编译所需的简单注释以及如何使用并行执行等选项来调整性能。

Numba 的安装

我们可以直接使用pip 来进行安装。

pip install numba

如何对 Pandas 使用 Numba?

将 Numba 与 Pandas 结合使用有两种方法:

  • 在 pandas 方法中指定 engine=“numba” 关键字

  • 定义你自己的用 @jit 修饰的 Python 函数,并将 DataFrame 或 Series 的底层 NumPy 数组(使用 to_numpy())传递到函数中。

使用 engine=“numba”

你可以通过指定 engine=“numba” 来增强所选 Pandas 方法的执行。

这指示该方法利用 Numba 来加速性能。支持该关键字的方法主要涉及窗口操作,例如:

  • 滚动平均值、中位数、最大值、最小值、总和和标准差等。

  • groupby 滚动平均值、中位数、最大值、最小值、总和和标准差等。

  • expanding 平均值、中位数、最大值、最小值、总和和标准差等。

  • groupby expanding 平均值、中位数、最大值、最小值、总和和标准差等。

# create a sample DataFrame  
data = np.random.rand(int(1e5), 4)  
df = pd.DataFrame(data)  
  
window_size = 10  
# rolling sum with Numba   
rolling_sum = df.rolling(window_size).sum(engine='numba')

上面的代码片段生成一个随机 DataFrame 并使用 Numba 引擎对其执行滚动求和操作,从而优化计算以提高效率。

定义你自己的函数

你还可以定义用 @jit 或 @njit 装饰的 Python 函数,并将 DataFrame 或 Series 的基础 NumPy 数组(使用 to_numpy())传递到函数中。此方法比使用 engine=“numba” 更灵活,因为你可以定义自己的自定义函数。

from numba import njit  
  
# create a sample DataFrame  
data = np.random.rand(int(1e5), 4)  
df = pd.DataFrame(data)  
  
# Define the custom function  
@njit  
def sum_of_squares(x):  
    return np.sum(x**2, axis=0)  
  
result = sum_of_squares(df.to_numpy())

此代码片段使用 Numba 的 @njit 装饰器(即 @jit(nopython=True) 的别名)来定义名为 sum_of_squares 的自定义函数。

它采用 NumPy 数组作为输入并计算沿列的平方和。

该代码生成一个随机 DataFrame,使用 to_numpy() 将其转换为 NumPy 数组,并应用 sum_of_squares 函数计算每列的平方和。结果存储在 result 变量中。

性能比较

我们比较执行时间并评估通过利用 Numba 的即时编译功能获得的潜在加速。

为此,我们在如下三种场景下测量代码的执行时间:有和没有 Numba 优化,以及并行执行。

下面提供了执行这些基准测试的代码:

import time  
import matplotlib.pyplot as plt  
import numba  
import numpy as np  
import pandas as pd  
  
plt.style.use('ggplot')  
# Define the custom rolling apply function  
def root_mean_square(x):  
    return np.sqrt(np.mean(x**2))  
  
def bench(df: pd.DataFrame, use_numba: bool, use_parallel: bool = False, n_times: int = 10):  
    engine = 'numba' if use_numba else None  
    engine_kwargs = {'parallel': True, 'nopython': True} if use_parallel else None  
      
    elapsed_time_list = []  
    for _ in range(n_times):  
        start_time = time.time()  
        df.rolling(window_size).apply(root_mean_square, raw=True, engine=engine, engine_kwargs=engine_kwargs)  
        elapsed_time_list.append(time.time() - start_time)  
    return np.mean(elapsed_time_list)  
  
  
# Generate sample data  
np.random.seed(42)  
data = np.random.rand(int(1e5), 4)  
df = pd.DataFrame(data)  
  
window_sizes = range(10, 1001, 100)  
mean_time_without_numba = []  
mean_time_with_numba = []  
mean_time_with_numba_parallel = []  
# Benchmark the performance for different window sizes  
for window_size in window_sizes:  
    # Without Numba  
    mean_time = bench(df, use_numba=False)  
    mean_time_without_numba.append(mean_time)  
      
    mean_time = bench(df, use_numba=True)  
    mean_time_with_numba.append(mean_time)  
  
    mean_time = bench(df, use_numba=True, use_parallel=True)  
    mean_time_with_numba_parallel.append(mean_time)  
  
mean_time_without_numba = np.array(mean_time_without_numba)  
mean_time_with_numba = np.array(mean_time_with_numba)  
mean_time_with_numba_parallel = np.array(mean_time_with_numba_parallel)  
print("mean_time_without_numba", mean_time_without_numba)  
print("mean_time_with_numba", mean_time_with_numba)  
print("mean_time_with_numba_parallel", mean_time_with_numba_parallel)  
  
fig, ax = plt.subplots(figsize=(8, 6))  
ax.plot(window_sizes, mean_time_without_numba / mean_time_with_numba, label='Numba')  
ax.plot(window_sizes, mean_time_without_numba / mean_time_with_numba_parallel, label='Numba + Parallel')  
  
ax.set_xlabel('Window Size')  
ax.set_ylabel('Speedup')  
ax.set_title('Speedup compared to without Numba: Pandas Rolling Apply')  
ax.legend()  
fig.savefig("numba_speedup_pandas_rolling_apply.png")  

如上图所示,Numba 将 pandas 滚动函数的执行速度提高了 260 倍。

基准测试结果清楚地证明了使用 Numba 在 Pandas 中进行滚动操作所实现的显着性能改进。

  • 与没有 numba 的非优化版本相比,Numba 显着提高了 pandas 滚动的性能。平均执行时间减少了一个数量级。

  • 与没有并行化的 numba 相比,具有并行化的 Numba 进一步增强了性能,实现了额外的加速。

  • 随着窗口大小的增加,加速比降低,这可能是由于所需滚动操作数量的减少。

Numba 即时编译器可以通过为关键函数生成优化的机器代码,将 Pandas 操作加速高达 260 倍。在 Pandas 方法中使用 numba 引擎可以轻松地在列上进行多线程处理。

定义 Numba 修饰的函数可以灵活地优化自定义操作。

尽管存在编译开销等限制,Numba 独特地将 Python 和 Pandas 的生产力与类似 C 的速度结合在一起。

对于处理大型数据集的数据科学家来说,Numba 是加速 Pandas 中重复数值计算的不可或缺的工具。

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值