题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5312
Sequence
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1336 Accepted Submission(s): 410
Problem Description
Today, Soda has learned a sequence whose
n-th
(n≥1) item is
3n(n−1)+1. Now he wants to know if an integer
m can be represented as the sum of some items of that sequence. If possible, what are the minimum items needed?
For example, 22=19+1+1+1=7+7+7+1.
Input
There are multiple test cases. The first line of input contains an integer
T
(1≤T≤104), indicating the number of test cases. For each test case:
There's a line containing an integer m (1≤m≤109).
There's a line containing an integer m (1≤m≤109).
Output
For each test case, output
−1 if
m cannot be represented as the sum of some items of that sequence, otherwise output the minimum items needed.
Sample Input
10 1 2 3 4 5 6 7 8 22 10
Sample Output
1 2 3 4 5 6 1 2 4 4
Source
题目大意:给出一个序列3*n*(n-1)+1。再输入一个m,求构成给定n所需的最小个数。
(序列中的没一个数能够使用若干次)
解题思路:明白一下
N*(N-1)/2为三角形数。性质:随意一个自然数都最多可由三个三角形数表示。
题目给的序列是3*n*(n-1)+1就能够转换为6*n*(n-1)/2+1。对于给定的值m,假如m须要k个数来表示。那么其一组解能够表示为m= 6*(K个三角形数的和)+K; 即随意由k个数组成的解 都有 (m-K)%6==0;那么仅仅要找到最小的k即为所求。
此外。对于序列的通式。当n=1或者n=2的时候,就会没有意义,所以对于1和2的时候须要特殊推断一下。
这是一道三角形数的推导及运用题目。
详见代码 。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int a[100005];
bool check1(int m)
{
for (int i=1; i<20010; i++)
{
if (a[i]==m)
return 1;
}
return 0;
}
bool check2(int m)
{
int j;
for (int i=1,j=20010-1; i<20010&&a[i]<m; i++)
{
while (a[i]+a[j]>m)
j--;
if (a[i]+a[j]==m)
return 1;
}
return 0;
}
int main()
{
for (int i=0; i<20010; i++)
{
a[i]=3*i*(i-1)+1;
}
int t;
scanf("%d",&t);
while (t--)
{
int m;
scanf("%d",&m);
int flag=0;
if (check1(m))
{
printf ("1\n");
continue;
}
else if (check2(m))
{
printf ("2\n");
continue;
}
else
{
for (int i=3; i<=8; i++) //循环到8的原因是由于模6的余数仅仅有0-5六个
{
if ((m-i)%6==0)
{
printf ("%d\n",i);
flag=1;
break;
}
}
}
if (flag==0)
{
printf ("-1\n");
}
}
return 0;
}