hdu 5312 Sequence(数学推导——三角形数)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5312

Sequence

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1336    Accepted Submission(s): 410


Problem Description
Today, Soda has learned a sequence whose n-th (n1) item is 3n(n1)+1. Now he wants to know if an integer m can be represented as the sum of some items of that sequence. If possible, what are the minimum items needed?



For example, 22=19+1+1+1=7+7+7+1.

 

Input
There are multiple test cases. The first line of input contains an integer T (1T104), indicating the number of test cases. For each test case:

There's a line containing an integer m (1m109).
 

Output
For each test case, output 1 if m cannot be represented as the sum of some items of that sequence, otherwise output the minimum items needed.
 

Sample Input
 
   
10 1 2 3 4 5 6 7 8 22 10
 

Sample Output
 
   
1 2 3 4 5 6 1 2 4 4
 

Source
 
题目大意:给出一个序列3*n*(n-1)+1。再输入一个m,求构成给定n所需的最小个数。

(序列中的没一个数能够使用若干次)

解题思路:明白一下 N*(N-1)/2为三角形数。性质:随意一个自然数都最多可由三个三角形数表示。  题目给的序列是3*n*(n-1)+1就能够转换为6*n*(n-1)/2+1。对于给定的值m,假如m须要k个数来表示。那么其一组解能够表示为m= 6*(K个三角形数的和)+K; 即随意由k个数组成的解 都有 (m-K)%6==0;那么仅仅要找到最小的k即为所求。
此外。对于序列的通式。当n=1或者n=2的时候,就会没有意义,所以对于1和2的时候须要特殊推断一下。
这是一道三角形数的推导及运用题目。

详见代码 。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

int a[100005];

bool check1(int m)
{
    for (int i=1; i<20010; i++)
    {
        if (a[i]==m)
            return 1;
    }
    return 0;
}

bool check2(int m)
{
    int j;
    for (int i=1,j=20010-1; i<20010&&a[i]<m; i++)
    {
        while (a[i]+a[j]>m)
            j--;
        if (a[i]+a[j]==m)
            return 1;
    }
    return 0;
}

int main()
{
    for (int i=0; i<20010; i++)
    {
        a[i]=3*i*(i-1)+1;
    }
    int t;
    scanf("%d",&t);
    while (t--)
    {
        int m;
        scanf("%d",&m);
        int flag=0;
        if (check1(m))
        {
            printf ("1\n");
            continue;
        }
        else if (check2(m))
        {
            printf ("2\n");
            continue;
        }
        else
        {
            for (int i=3; i<=8; i++) //循环到8的原因是由于模6的余数仅仅有0-5六个
            {
                if ((m-i)%6==0)
                {
                    printf ("%d\n",i);
                    flag=1;
                    break;
                }
            }
        }
        if (flag==0)
        {
            printf ("-1\n");

        }
    }
    return 0;
}



转载于:https://www.cnblogs.com/mfmdaoyou/p/6935223.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值