Manthan, Codefest 16 D. Fibonacci-ish(暴力)

暴力求解斐波那契数列
本文介绍了一个基于暴力枚举的算法,用于解决寻找最长斐波那契数列的问题。通过枚举开始的两个数,并利用map进行元素去重,此算法能在给定的数值集合中找到最长的符合斐波那契数列定义的序列。

题目链接:点击打开链接

题意:给你n个数, 问最长的题目中定义的斐波那契数列。 

思路:枚举開始的两个数, 由于最多找90次, 所以能够直接暴力, 用map去重。  注意, 该题卡的时间有点厉害啊。 用了两个map结果超时。

细节參见代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define Max(a,b) ((a)>(b)?

(a):(b)) #define Min(a,b) ((a)<(b)?(a):(b)) using namespace std; typedef long long ll; typedef long double ld; const ld eps = 1e-9, PI = 3.1415926535897932384626433832795; const int mod = 1000000000 + 7; const int INF = int(1e9); const ll INF64 = ll(1e18); const int maxn = 1000 + 10; int T,n,m; ll a[maxn], b[maxn]; map<ll, int> p, bit; int main() { scanf("%d",&n); int cnt0 = 0; for(int i=0;i<n;i++) { scanf("%I64d",&a[i]); p[a[i]]++; if(!a[i]) ++cnt0; } int ans = 2; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { if(i == j) continue; if(!a[i] && !a[j]) { ans = max(ans, cnt0); continue; } else { int cur = 2, cnt = 2; ll l = a[i], r = a[j]; b[0] = l; b[1] = r; while(abs(l + r) <= INF) { b[cnt++] = l + r; ll c = r; r = l + r; l = c; } b[cnt++] = l + r; for(int k = 0; k < cnt; k++) { if(!p.count(b[k]) || p[b[k]] == 0) { ans = max(ans, k); for(int l = 0; l < k; l++) p[b[l]]++; break; } else p[b[k]]--; } } } } printf("%d\n",ans); return 0; }



转载于:https://www.cnblogs.com/zhchoutai/p/8682965.html

内容概要:本文介绍了基于自适应傅里叶分解(AFD)的多通道信号分析方法,并提供了完整的Matlab代码实现,适用于复杂信号的时频分析。该方法特别针对非平稳、非线性信号具有良好的分解能力,可用于如机械故障诊断、生物医学信号处理等领域。文档还列举了多个相关研究方向和技术应用实例,包括轴承故障检测、无人机路径规划、微电网功率交换、信号去噪与预测等,展示了AFD及其他先进算法在工程实践中的广泛适用性。同时附带网盘资源链接,便于获取完整代码与资料。; 适合人群:具备一定信号处理或自动化背景的研究生、科研人员及从事机电系统故障诊断、智能算【自适应傅里叶分解AFD】多通道信号分析的自适应傅里叶分解(Matlab代码实现)法开发的工程技术人员;熟悉Matlab编程并希望将先进信号分析方法应用于实际项目的从业者;; 使用场景及目标:①在变速工况下对多通道振动信号进行高效特征提取与故障识别;②利用AFD替代传统傅里叶变换或EMD方法提升信号分解精度;③结合倒谱预白化、包络谱分析等技术实现强噪声环境下的早期故障诊断;④拓展至无人机、电力系统、通信等领域的信号建模与优化问题; 阅读建议:建议读者按目录顺序系统学习,重点关注AFD算法原理与Matlab实现细节,结合提供的案例调试代码,理解参数设置对分解效果的影响;同时可参考文中提及的其他高级算法(如鲸鱼优化、深度学习模型)进行融合创新,提升研究深度与实用性。
【源码免费下载链接】:https://renmaiwang.cn/s/puuzw MATLAB混沌工具箱,如"Chaos-Toolbox-Ver.2.0",为混沌系统研究者及工程技术人员提供了强大的工具。它特别适用于在MATLAB环境下进行混沌系统分析。该工具箱集成了多种功能模块,能够帮助用户完成Lyapunov指数计算、奇异吸引子绘制以及庞加莱截面图生成等关键任务。这些操作均与混沌动力学分析密切相关。 1. **Lyapunov指数**:正的Lyapunov指数表明系统对初始条件具有高度敏感性,这是判断一个动态系统是否为混沌系统的可靠指标。该工具箱提供了计算Lyapunov指数的功能模块,使用户能够定量评估混沌系统的稳定性特征。 2. **奇异吸引子**:通过此工具箱,用户可以方便地绘制各种典型混沌系统的奇异吸引子图形,如洛伦兹吸引子、Hénon映射等。这些可视化结果有助于深入理解复杂动力学行为。 3. **庞加莱截面图**:该工具箱内置了生成庞加莱截面图的函数模块,可将高维系统投影至二维空间,从而更直观地观察系统的长期演化规律及其潜在周期性或混沌特性。 4. **MATLAB兼容性**:Chaos-Toolbox-Ver.2.0与MATLAB7.0及7.1版本完美兼容,确保即使在较老版本的MATLAB环境中也能顺利运行相关功能模块。 5. **应用领域**:该工具箱广泛应用于气象预测、生物系统研究、经济模型分析、密码学设计以及电路仿真等多个领域。它为研究人员和工程师提供了一种高效便捷的研究方法,帮助探索各领域中的混沌现象本质。 6. **使用教程**:尽管文本中未提及具体使用说明,但通常这类工具箱都会附带用户手册或指导文档,详细解释如何利用其功能模块进行实际分析工作。有需要的用户可通过访问www.pudn.com.txt获取完整的技术指南和相关资源信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值