Manthan, Codefest 16 D. Fibonacci-ish



题意:

现有一个数组,从中任意选一些数构成一个斐波那契数列,问能够成的最长数列的长度是多少


题解:

一堆绝对值<=10^9的数用来构造斐波那契数列,虽然斐波那契数列增长不快,但是长度也不可能超过100,暴力枚举最开始的两个数,尝试能否构成即可

O(n^2)


数据可能会有很多0的情况 要单独特判。。

#include <set>
#include <map>
#include <stack>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define L(i) i<<1
#define R(i) i<<1|1
#define INF  0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-9
#define maxn 100100
#define MOD 1000000007

int n,m;
long long a[1010],b[1010];
map<long long,int> mp;

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int t,C = 1;
    //scanf("%d",&t);
    while(scanf("%d",&n) != EOF)
    {
        mp.clear();
        int num = 0;
        for(int i = 0; i < n; i++)
        {
            scanf("%lld",&a[i]);
            mp[a[i]]++;
            if(!a[i])
                num++;
        }
        int ans = 2;
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
            {
                if(i == j)
                    continue;
                if(!a[i] && !a[j])
                {
                    ans = max(ans,num);
                    continue;
                }
                b[0] = a[i];
                b[1] = a[j];
                mp[a[i]]--;
                mp[a[j]]--;
                int k = 2;
                long long l = a[i],r = a[j];
                while(1)
                {
                    if(mp.count(l+r) && mp[l+r] > 0)
                    {
                        long long p = l + r;
                        mp[p]--;
                        b[k++] = p;
                        l = r;
                        r = p;
                    }
                    else
                    {
                        for(int o = 0; o < k; o++)
                            mp[b[o]]++;
                        break;
                    }
                }
                ans = max(ans,k);
            }
        printf("%d\n",ans);
    }
    return 0;
}


题意:

现有一个数组,从中任意选一些数构成一个斐波那契数列,问能够成的最长数列的长度是多少


题解:

一堆绝对值<=10^9的数用来构造斐波那契数列,虽然斐波那契数列增长不快,但是长度也不可能超过100,暴力枚举最开始的两个数,尝试能否构成即可

O(n^2)


用离散化存数的时候一开始没考虑到 f0 = f1的情形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值