题意:
Fibonacci−ish Sequence:=f0,f1任意,对于n≥0满足fn+2=fn+1+fn
给定N≤103的序列,|ai|≤109,重排后,问最长的Fibonacci−ish前缀长度
分析:
由于Fibonacci数列的长度是log级的,所以直接枚举f0,f1然后构造出这个数列,不断更新答案就可以了
需要注意的是,特判f0=f1=0的情况,不然会退化到n3的
需要注意的是,不能重新添加map,要记录用过的数回溯一下,不然也会退化到n3的
由于用map记录数是否用过,时间复杂度为O(n2log2n)
代码:
//
// Created by TaoSama on 2016-02-27
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
#include <unordered_map>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e3 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
int n, a[N];
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
while(scanf("%d", &n) == 1) {
map<int, int> mp;
for(int i = 1; i <= n; ++i) {
scanf("%d", a + i);
++mp[a[i]];
}
int ans = mp[0];
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) {
if(i == j || !a[i] && !a[j]) continue;
vector<int> dummy;
dummy.push_back(a[i]);
dummy.push_back(a[j]);
--mp[a[i]]; --mp[a[j]];
int pre = a[j], nxt = a[i] + a[j], cnt = 2;
//because Fibonacci sequence increases so fast, about O(log)
while(true) {
if(mp[nxt]) {
--mp[nxt]; ++cnt;
dummy.push_back(nxt);
int tmp = nxt;
nxt += pre;
pre = tmp;
} else break;
}
ans = max(ans, cnt);
for(int x : dummy) ++mp[x];
}
}
printf("%d\n", ans);
}
return 0;
}