ZOJ3819 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江司A称号 Average Score 注册标题

本文介绍了一道关于计算两个班级平均分变化的问题。题目要求根据已知的两个班级除鲍勃外的学生分数,计算出使得两个班级平均分都会增加的鲍勃的成绩范围。提供了一种解决方案,并附带了实现该算法的C++代码。
Average Score

Time Limit: 2 Seconds      Memory Limit: 131072 KB

Bob is a freshman in Marjar University. He is clever and diligent. However, he is not good at math, especially in Mathematical Analysis.

After a mid-term exam, Bob was anxious about his grade. He went to the professor asking about the result of the exam. The professor said:

"Too bad! You made me so disappointed."

"Hummm... I am giving lessons to two classes. If you were in the other class, the average scores of both classes will increase."

Now, you are given the scores of all students in the two classes, except for the Bob's. Please calculate the possible range of Bob's score. All scores shall be integers within [0, 100].

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers N (2 <= N <= 50) and M (1 <= M <= 50) indicating the number of students in Bob's class and the number of students in the other class respectively.

The next line contains N - 1 integers A1A2, .., AN-1 representing the scores of other students in Bob's class.

The last line contains M integers B1B2, .., BM representing the scores of students in the other class.

Output

For each test case, output two integers representing the minimal possible score and the maximal possible score of Bob.

It is guaranteed that the solution always exists.

Sample Input
2
4 3
5 5 5
4 4 3
6 5
5 5 4 5 3
1 3 2 2 1
Sample Output
4 4
2 4

     这个题是牡丹江赛区的签到题,证明来过~~~事实上就是非常水的题目。题目告诉你你平均分高于第二个班,低于第一个班。让你求出分数上下区间,直接得到平均分数然后无论精度寻找还是暴力寻找都能够,反正总分最高才是5000分,怎么找都不会TLE,方法就任意了,是非常水的题目。就不多说,详细AC程序例如以下:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int main()
{
 //   freopen("in.txt","r",stdin);
    int t;
    cin>>t;
    while(t--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        int sum1=0,sum2=0;
        for(int i=0;i<n-1;i++)
        {
            int it;
            scanf("%d",&it);
            sum1+=it;
        }
        for(int i=0;i<m;i++)
        {
            int it;
            scanf("%d",&it);
            sum2+=it;
        }
        int ti=1;
        while(ti*m<=sum2)
            ti++;
        int l=ti;
        while(ti*(n-1)<sum1)
            ti++;
        int r=ti-1;
        printf("%d %d\n",l,r);
    }
    return 0;
}


版权声明:本文博主原创文章。博客,未经同意不得转载。

转载于:https://www.cnblogs.com/lcchuguo/p/4856152.html

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值