使用Keras基于AdvancedEAST的场景图像文本检测

Blog:https://blog.csdn.net/linchuhai/article/details/84677249

GitHub:https://github.com/huoyijie/AdvancedEAST

自然场景文本检测

自然场景文字是图像高层语义的一种重要载体,自然场景文本检测是图像处理的核心模块,近年来ICDAR的历界比赛成绩不断提升:

Result:http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1&gtv=1

EAST

论文:旷视 - CVPR2017 - EAST: An Efficient and Accurate Scene Text Detector

Github:https://github.com/argman/EAST https://github.com/kurapan/EAST

优点

1)步骤简化:传统的文本检测方法和一些基于深度学习的文本检测方法,大多是Multi-stage,在训练时需要对多个Stage调优,这势必会影响最终的模型效果,而且非常耗时。针对上述存在的问题,EAST提出了端到端的文本检测方法,消除中间多个Stage(如候选区域聚合,文本分词,后处理等),直接预测文本行,其架构就是下图中对应的E部分,跟前面的方法比起来的确少了比较多的过程。(类似于经典的CTPN架构)

2)多方向文本定位:虽然CTPN方法在水平文本的检测方面效果比较好,但是对于竖直文本或者倾斜的文本,该方法的检测就很差,而EAST能支持多方向文本的定位。

网络结构

AdvancedEAST

开源:https://github.com/huoyijie/AdvancedEAST

优点

  • 基于Keras,易于阅读和运行
  • 基于EAST,一种先进的文本检测算法
  • 易于训练模型
  • 进行了重大改进,长文本预测更准确

分析:实验中,AdvancedEast获得了比East更好的预测准确性,特别是在长文本上。这是因为原始East使用所有像素的预测顶点坐标的加权平均值计算最终顶点坐标,而从四边形的另一侧预测2个顶点比较困难。

网络结构

输出层分别是1位score map, 是否在文本框内;2位vertex code,是否属于文本框边界像素以及是头还是尾;4位geo,是边界像素可以预测的2个顶点坐标。所有像素构成了文本框形状,然后只用边界像素去预测回归顶点坐标。边界像素定义为黄色和绿色框内部所有像素,是用所有的边界像素预测值的加权平均来预测头或尾的短边两端的两个顶点。头和尾部分边界像素分别预测2个顶点,最后得到4个顶点坐标。

限制:检测器可以处理的文本实例的最大尺寸与网络的感受野成比例。 这限制了网络预测更长文本区域的能力,例如跨越图像的文本行。此外,对于垂直文本实例,该算法可能漏掉或给出不精确的预测,因为它们只占ICDAR 2015训练集中的一小部分文本区域。

|--data
|----test
|-------demo 测试样例
|-------predict 预测样例
|----train
|-------ICPR_text_train
ICPR MTWI 2018 图文识别挑战赛数据集
|--model
|----east_model_weights_*.h5 模型权重文件
|----vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 keras下基于tensorflow的VGG16模型notop权重系数h5文件
|--predict 预测
|----num.py
|----predict.py
|--train
|----cfg.py 参数配置
|----preprocess.py 数据预处理
|----label.py 数据标签生成
|----network.py 网络结构定义
|----losses.py 损失函数定义
|----data_generator.py 训练数据生成
|----advanced_east.py 模型训练

数据集

tianchi ICPR dataset - https://pan.baidu.com/s/1NSyc-cHKV3IwDo6qojIrKA(ye9y)- ICPR MTWI 2018挑战赛:网络图像的文本检测

标签点

  • 按顺序排列四个点,逆时针旋转,且第一个点为左上角点
  • 刚开始选择最左边的点,如果最后计算的第二个点的Y比第一个点大,那就让最后一个点做为第一个点,其他点依次右移

    • 以最小的X坐标为起点(起名为A)
    • 其他三个点和第一个点(A)连线形成夹角,取中间的点为第三个点(起名C)
    • 以AC为连线,在AC上方为D,下方为B
    • 最后比较AC和BD的斜率,AC>BD,则顺序调整为DABC;AC<BD,则维持ABCD

例如:

 

  • 注意长边的位置:针对上面两幅图,第一张的long_edge=0,2,第二张的long_edge=1,3

标签切边

  • 以最短边的0.3进行缩放当做内部点

  

  • 以最短边的0.6作为头尾点
    • 注意:这里头尾都是针对最长边上的操作
    • 注意:头和尾是按照标签点的顺序进行的,排在前面为头,排在后面为尾

 

训练

预处理 - 调整图像大小为256*256、384*384、512*512、640*640、736*736(分别训练可以加快训练过程)

预训练模型 - https://pan.baidu.com/s/1KO7tR_MW767ggmbTjIJpuQ(kpm2)

1)准备数据集
# 数据集格式 - /ICPR_text_train/train_1000
# cfg.py定义images/labels路径
image_1000/*.jpg
txt_1000/*.txt - X1,Y1,X2,Y2,X3,Y3,X4,Y4,“文本” # X1,Y1,Y2,X2,X3,X4,Y3,Y4 对于文本内容的四边形顶点
2)参数配置
cfg.py
3)预处理
preprocess.py # 若原始图片过多,可不resize过多图片,[256,736]够了,其在cfg.py更改
4)生成标签信息
label.py # 比较耗时
5)执行模型训练
advanced_east.py

loss计算

#input : 1*w*h*3
#label : 1*160*160*7(batch,w,h,type)
def quad_loss(y_true, y_pred):
    # loss for inside_score
    logits = y_pred[:, :, :, :1]
    labels = y_true[:, :, :, :1]
    # balance positive and negative samples in an image
    beta = 1 - tf.reduce_mean(labels)
    # first apply sigmoid activation
    predicts = tf.nn.sigmoid(logits)
    # log +epsilon for stable cal
    inside_score_loss = tf.reduce_mean(
        -1 * (beta * labels * tf.log(predicts + cfg.epsilon) +
              (1 - beta) * (1 - labels) * tf.log(1 - predicts + cfg.epsilon)))
    inside_score_loss *= cfg.lambda_inside_score_loss

    # loss for side_vertex_code
    vertex_logits = y_pred[:, :, :, 1:3]
    vertex_labels = y_true[:, :, :, 1:3]
    vertex_beta = 1 - (tf.reduce_mean(y_true[:, :, :, 1:2])
                       / (tf.reduce_mean(labels) + cfg.epsilon))
    vertex_predicts = tf.nn.sigmoid(vertex_logits)
    pos = -1 * vertex_beta * vertex_labels * tf.log(vertex_predicts +
                                                    cfg.epsilon)
    neg = -1 * (1 - vertex_beta) * (1 - vertex_labels) * tf.log(
        1 - vertex_predicts + cfg.epsilon)
    positive_weights = tf.cast(tf.equal(y_true[:, :, :, 0], 1), tf.float32)
    side_vertex_code_loss = \
        tf.reduce_sum(tf.reduce_sum(pos + neg, axis=-1) * positive_weights) / (
                tf.reduce_sum(positive_weights) + cfg.epsilon)
    side_vertex_code_loss *= cfg.lambda_side_vertex_code_loss

    # loss for side_vertex_coord delta
    g_hat = y_pred[:, :, :, 3:]
    g_true = y_true[:, :, :, 3:]
    vertex_weights = tf.cast(tf.equal(y_true[:, :, :, 1], 1), tf.float32)
    pixel_wise_smooth_l1norm = smooth_l1_loss(g_hat, g_true, vertex_weights)
    side_vertex_coord_loss = tf.reduce_sum(pixel_wise_smooth_l1norm) / (
            tf.reduce_sum(vertex_weights) + cfg.epsilon)
    side_vertex_coord_loss *= cfg.lambda_side_vertex_coord_loss
    return inside_score_loss + side_vertex_code_loss + side_vertex_coord_loss


def smooth_l1_loss(prediction_tensor, target_tensor, weights):
    n_q = tf.reshape(quad_norm(target_tensor), tf.shape(weights))
    diff = prediction_tensor - target_tensor
    abs_diff = tf.abs(diff)
    abs_diff_lt_1 = tf.less(abs_diff, 1)
    pixel_wise_smooth_l1norm = (tf.reduce_sum(
        tf.where(abs_diff_lt_1, 0.5 * tf.square(abs_diff), abs_diff - 0.5),
        axis=-1) / n_q) * weights
    return pixel_wise_smooth_l1norm


def quad_norm(g_true):
    shape = tf.shape(g_true)
    delta_xy_matrix = tf.reshape(g_true, [-1, 2, 2])
    diff = delta_xy_matrix[:, 0:1, :] - delta_xy_matrix[:, 1:2, :]
    square = tf.square(diff)
    distance = tf.sqrt(tf.reduce_sum(square, axis=-1))
    distance *= 4.0
    distance += cfg.epsilon
    return tf.reshape(distance, shape[:-1])

if __name__ == '__main__':
    x, y = data_generator.gen(1)
    loss_t = quad_loss(y,y)

NMS(非极大值抑制)

  • 作用:去掉detection任务重复的检测框(不是局部的最大值都去除)

基于前面的网络(如RPN)能为每个框给出一个score,score越大证明框越接近期待值。如上图,两个目标分别有多个选择框,现在要去掉多余的选择框。分别在局部选出最大框,然后去掉和这个框IOU>0.7的框。

 

 

pixel_threshold = 0.9 #内部点阈值(目标点概率)
side_vertex_pixel_threshold = 0.9 #内部头尾点的阈值
##头尾点取值范围,head->[0,trunc_threshold] tail->[1-trunc_threshold,1],变大之后检测能力变强
trunc_threshold = 0.1 

预测

 

转载于:https://www.cnblogs.com/YSPXIZHEN/p/11289577.html

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值