tensorflow训练数据集遇到`module ‘tensorflow‘ has no attribute ‘placeholder‘` 错误

我安装的是python3.7版本,对应的tensorflow版本是2.X,查资料得知,python3.7及以上版本tensorflow都是2.0以上,只有1.x版本才有tf.placeholder

解决办法:

`import tensorflow as tf`

改为

import tensorflow.compat.v1 as tf

tf.disable_v2_behavior()

这里需要将所有涉及到的代码都换掉,换掉之后开始训练,但是又遇到了一个问题

module "tensorflow.compat.v1" has no attribute 'contrib'

报错的代码是

initializer=tf.contrib.layers.xavier_initializer()

查找百度得知,还是tensorflow版本太高带来的问题,解决办法:

TensorFlow 2.x之后把tf.contrib.layers.xavier_initializer()替换成了 tf.keras.initializers.glorot_normal()(Xavier 和 Glorot 是对同一种初始化算法的不同命名),使用新的函数替换即可

因此将原代码改为:

initializer=tf.keras.initializer.glorotr_normal()

切记!把train_model.py文件下的所有卷积层和全连接层都换掉,即可继续运行

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值