ConsensusClusterPlus根据基因表达量对样品进行分类

该博客介绍了如何利用R语言中的ConsensusClusterPlus包,基于基因表达量数据对生物样品进行一致聚类分析。通过中位数中心化处理数据,选择差异较大的基因,并设置不同参数进行重抽样,以确定稳定的样本分类。结果包括聚类矩阵、聚类树和信息准则(ICL)评估,以识别可靠的亚群分类和标签基因。
摘要由CSDN通过智能技术生成

#http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881355/

一致聚类方法,采用重抽样方法来验证聚类合理性。

library(ALL)
data(ALL)
d=exprs(ALL)
d[1:5,1:5]

#对上面这个芯片表达数据我们一般会简单的进行normalization (本次采用中位数中心化),然后取在各个样品差异很大的那些gene或者探针的数据来进行聚类分析

mads=apply(d,1,mad)# mad(x) 绝对中位数差 按行(1)取d数据的中位数

d=d[rev(order(mads))[1:5000],]
#去除前5000个数据
d = sweep(d,1, apply(d,1,median,na.rm=T))
#按行减去中位数,r语言中使用sweep(x, MARGIN, STATS, FUN="-", ...) 对矩阵进行运算。MARGIN为1,表示行的方向上进行运算,
#为2表示列的方向上运算。STATS是运算的参数。FUN为运算函数,默认是减法。

library(ConsensusClusterPlus)
title=tempdir()
results = ConsensusClusterPlus(d,maxK=6,reps=50,pItem=0.8,pFe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值