中国剩余定理

前置知识:

  逆元定义:满足ax≡1(mod m)的整数x为a对模m的数论倒数或逆元,记为a-1(mod m)或a-1(百度搜索数论倒数)

  还有取模意义下的各种运算(其实跟不取模的也没有太大差异,但是小部分还是有差异的,例如除法,这个还是自己百度吧,这里不赘述了)

行,那我们来正式开始中国剩余定理

它讲了这么一个事:求最小的数使它除以3余2,除以5余1,除以7余2

根据已知条件,我们可以得到如下结论

  x%3=2

  x%5=1

  x%7=2

抽象成为:

  x%m1=a1

  x%m2=a2

  x%m3=a3

  ......

 

于是有如下思路:找1个模m1等于a1,模m2等于a2....的数不容易,那我们就先找模m1余a1,模其它数余0的数,最后再调整到满足所有条件的

但其实这样的也不好找,那就简化成模m1余1(这不就是逆元嘛),模其它数余0的数,最后再调整到余a1

 

实际操作如下:

先找模m1余1,模其它数余0的数

记M=m1*m2*m3*...mn;

则m2*m3*...mn=M/m1,记为M1;//为了使M1(最终结果的一部分)模m2,m3...mn等于0

记t1为M1在模m1意义下的逆元//这样就使M1*t1模m1等于1,继承上面,模m2,m3...mn等于0

那么我们就完成了第一步

接下来给t1*M1乘上a1我们就可以得到模m1余a1的数了(M1*t1%m1=1-->M1*t1*a1%m1=a1)

记M1*t1*a1=x1

第二步就完成了

接下来对每一对ai,mi都进行如上操作,得到x1,x2,x3...xn;

将x1,x2,x3..xn相加得到最终结果x0

最后的最后需要将x0 mod M才能得到x,为了把x0调整为最小的数(这里还可以证明:在1-M的范围内,有且仅有一个x满足上述条件,证明可用反证法,假设有2个,最后相减等于0,证明2解相等,即为1解)

接下来是模板

//a[i]一定要互质才行!!!! 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
int a[15],b[15],n,ls,y,x,mod;
int exgcd(int a,int b,int &x,int &y)//扩欧求逆元
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int r=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return r;
}
signed main()//因为上面#define int long long了 
{
    scanf("%lld",&n);
    for(int i=1;i<=n;i++) scanf("%lld%lld",&a[i],&b[i]);//模a[i]余b[i]
    mod=1;   
    for(int i=1;i<=n;i++) mod*=a[i];
    for(int i=1;i<=n;i++)
    {
        int kkk=mod/a[i];
        exgcd(a[i],kkk,ls,y);
        x=(x+y*kkk*b[i])%mod;
    }
    int ans=(x+mod)%mod;
    printf("%lld",ans);
} 

行了,我的坑填完了

液!( •̀ ω •́ )y

转载于:https://www.cnblogs.com/xiaojuA/p/9873632.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值