由于时间紧,不能将相关概念一一陈述。
随机事件的关系和运算
随机试验
在抛硬币的过程中,我们注意到,在相同条件下,我们每一次抛硬币的时候,我们无法得知硬币最后静止时,硬币的哪一面向上,但是我们通过不断的抛硬币的过程中发现,结果无非是正方两面。
因此我们定义随机试验:
1. 试验可以在相同条件下重复地进行。
2. 试验的结果不止一个,且事先可以明确实验的所有可能结果,
3. 试验之前无法预知会出现哪一个结果。
样本空间
已知一个随机事件,其所有可能结果组成的集合称为样本空间。随机事件可能的结果称为样本点。
随机事件
样本空间中满足某些条件的子集,称为随机事件。
事件的关系
- 包含关系: A⊂B⇔ 事件A发生B必然发生
- 相等关系: A=B⇔A⊂B,B⊂A
和关系 : A∪B⇔ 事件A与事件B至少发生一个
对于事件的关系而言,用语言的描述更能让人理解事件的”真正”关系.
积事件: A∩B⇔ 事件A与事件B同时发生。所谓的事件同时发生,由于随机事件是样本空间的子集,也就是它由一系列的样本点组成。所以,两个事件的样本点有交集时,相同的样本点发生,即为事件A与事件B同时发生。
- 差事件: A−B⇔ B不发生而A发生。
也就是说 A−B=A−A∩B=A∩B¯¯¯
在以后的学习上可能会出现独立事件,首先我们明确的是,此时给出的公式是通用公式是用于任何事件关系,而不管其是否独立。
5. 互不相容事件:
A∩B=ϕ⇔
事件A与事件B不肯能同时发生
6. 对立事件:
A∩B=ϕ,A∪B=Ω↔
A与B必有一个发生且仅有一个发生。
若A、B为对立事件则其非事件仍为对立事件。
最后一个是比较容易疏忽的概念
7. 完全事件组:事件两两互不相容、且事件的和事件为样本空间。
运算不讲
随机事件的概率与运算
概率
对于概率的概念,在概率论中是以函数的形式定义的,太**了。
这个函数P(A)具有:(A为随机事件)
1. 非负性
2. 规范性(样本空间的概率为1)
3. 可加性(也就是相当于完全事件组的子集,不两两互不相容其和运算为完全事件组的子集)
概率的性质
- 不可能事件的概率为0
- 对于两两互不相容的事件 P(∪ni=1Ai)=∑ni=1P(Ai)
- 对于两个事件A 、B,如果 A⊂B则有P(B−A)=P(B)−P(A)
- 加法公式 P(A∪B)=P(A)+P(B)−P(AB)
对于任何事件A,有 P(A¯¯¯)=1−P(A)
对于事件发生的概率,有一个问题值得思考,当其概率为0时,它是不是不可能事件?当一个事件的概率为1时,它是不是样本空间的概率?这个结论虽然不是那么明显,但确实都不是,但我们却不知道证明,此时我们可以举出反例,假设数轴上0到1内所有的点为样本空间,则数轴上的任一一点为样本点,此时此样本点的概率为0,我们不能说其是不可能事件,相反除此样本点的事件为1则该事件一定不是样本空间的概率。
求概率的方法
在这第二节,引入了概率论最最基础的两个模型,一个是古典型概率,一是几何型概率
古典型概率
- 试验中基本事件数目有限
- 基本事件发生的可能性相同
几何型概率
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积或度数)成比例,则称这样的概率模型为几何概率模型,简称为几何型概率。
全概率公式
公式表示若事件A1,A2,…,An构成一个完备事件组且都有正概率,则对任意一个事件B都有公式成立
贝叶斯公式
在全概率的条件下:
- 引起A发生有互不相容的n种情况。
- 事件A发生依赖事件 Bi 的发生。
贝叶斯公式的厉害之处在于它可以得出在A发生之后B发生的概率。
事件得独立性和独立重复试验
若事件满足P(AB)=P(A)P(B)则称事件与相互独立,简称A与B相互独立。
若A、B相互独立且概率不为0,则独立与不互相容不能同时存在。
三个事件相互独立
三个事件两两独立
定理1,若A、B为两个事件,AB相互独立,则P(A|B)=P(A)。
定理2,若A、B相互独立则
A,B¯¯¯、A¯¯¯、B、A¯¯¯,B¯¯¯
相互独立
伯努利试验
条件概率
其他
关于事件独立性、和对立事件、和互不相容之间得关系。
在同一样本空间下:
如果两个个事件是对立关系那么这两个事件得独立性是什么?
如果两个个事件是互不相容关系那么这两个事件得独立性是什么?
若A、B相互独立且概率不为0,则独立与不互相容不能同时存在。
根据这个若独立或者互不相容是否能退出A B一定不具有独立性。