破茧蛰伏的日子
码龄13年
关注
提问 私信
  • 博客:23,142
    23,142
    总访问量
  • 6
    原创
  • 739,906
    排名
  • 2,289
    粉丝
  • 22
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2011-06-17
博客简介:

破茧的日子的博客

查看详细资料
个人成就
  • 获得23次点赞
  • 内容获得2次评论
  • 获得107次收藏
创作历程
  • 1篇
    2021年
  • 7篇
    2020年
成就勋章
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

linux下调试python程序

linux下调试python程序前言设置断点方式调试方式前言初学者调试python程序都是用print参数,其实python也有类似C语言gdb的工具pdb。设置断点方式 1. 在程序里加入: a. import pdb b. 在需要设置断点的地方加入pdb.set_trace() 如:import pdb pdb.set_trace() a=28*100 2. 调试时用b设置调试方式执行python -
原创
发布博客 2021.06.28 ·
715 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Linux zip与tar分卷压缩及合并解压

1.zip 分卷压缩与合并解压1. 分卷压缩 # 将文件或文件夹打包为zip压缩包,imgs可以为文件夹也可以为文件zip -r imgs.zip ./imgs# 压缩后imgs.zip为2.3G,将其分割,每个子压缩包不超过1G,生成三个压缩包subimgs.z01(1G)、subimgs.z02(1G)和subimgs.zip(0.3G)zip -s 1024m imgs.zip --out subimgs.zip2. 合并解压 # 将上述三个压缩包合并为一个压缩文件single.z
原创
发布博客 2020.12.04 ·
6540 阅读 ·
4 点赞 ·
1 评论 ·
36 收藏

ubuntu卸载旧的NVIDIA驱动,安装新驱动,并安装Nvidia-docker2

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、Linux卸载并更新显卡驱动1. 下载对应版本的驱动2. 卸载已有驱动3. 重启服务器4. 安装新驱动二、安装cuda三、安装docker四、安装nvidia-docker2五、出错的解决办法六、制作容器1. 下载镜像2. 制作容器3. 启动并进入容器4. 进入容器安装其他工具5、将安装新工具后的容器保存6. 加载被人做好的镜像7、一些docker命令一、Linux卸载并更新显卡驱动提示:以下是本篇文章正文内容,下面案例
原创
发布博客 2020.12.04 ·
2077 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

FCOS:全卷积单阶段目标检测

转自:https://blog.csdn.net/weixin_42662134/article/details/89378085,如有侵权请联系我删除。FCOS:全卷积单阶段目标检测摘要 1. 引言 2. 相关文献 anchor based模型 anchor free模型 3. 方法 3.1 全卷积单阶段目标检测器 3.2 FCOS的FPN多层级预测 FCOS的中心度(*Center-ness*) 实验摘要我们提出了一种全
转载
发布博客 2020.12.03 ·
827 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PyTorch-网络的创建,预训练模型的加载

PyTorch-网络的创建,预训练模型的加载@TOC参考如下:https://www.cnblogs.com/wangguchangqing/p/11058525.html 。
原创
发布博客 2020.11.14 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

知识蒸馏:如何用一个神经网络训练另一个神经网络

如果你曾经用神经网络来解决一个复杂的问题,你就会知道它们的尺寸可能非常巨大,包含数百万个参数。例如著名的BERT模型约有1亿1千万参数。 为了说明这一点,参见下图中的NLP中最常见架构的参数数量。 各种模型结构的参数数量 在Kaggle竞赛中,胜出的模型通常是由几个模型组成的集合。尽管它们在精确度上可以大大超过简单模型,但其巨大的计算成本使它们在实际应用中完全无法使用。...
转载
发布博客 2020.10.22 ·
707 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

深度学习超参数——momentum、learning rate和weight decay

文章目录前言一、momentum二、 权重衰减(weight decay)1.背景2. L2正则化与权重衰减系数3. 公式推导4. 正则项(权重衰减)作用三、 学习率(learning rate)前言利用深度学习网络训练模型时,需要对一些超参数作用与意义进行清楚了解,才能根据实际训练时出现的问题做相应调整,进而训练出满足精度的模型。一、momentum动量来源于牛顿定律,基本思想是为了找到最优,SGD通常来说下降速度比较快,但却容易造成另一个问题,就是更新过程不稳定,容易出现震荡。加入“惯性..
原创
发布博客 2020.10.21 ·
11076 阅读 ·
15 点赞 ·
1 评论 ·
56 收藏

深度学习系列

深度学习总结系列solver.prototxt 参数解析对于caffe 来讲solver为其运行控制的核心,控制着整个模型的运作方式。solver.prototxtsolver.prototxt 为caffe配置文件,里面定义了各种参数包括学习率,权重衰减、动量值等:net:"train_val.prototxt"test_iter: 266test_interval: 1000base_lr: 0.001display: 100max_iter: 50000lr_policy: "
原创
发布博客 2020.10.21 ·
580 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏