大体题意:
要求从1号出发,一笔画经过所有的路,问是否有解,并打印字典序最小的解?
思路:
显然是无向图的欧拉道路!
先判连通,直接用并查集了,不连通直接-1了
连通的话,在看看每个点的度数,当奇点的个数不是0 并且不是2 肯定是-1
如果是2 的话,1号结点是偶数度数的话也是-1
否则我们就可以从1号结点直接dfs找路了!
注意:
不能再dfs之前就输出路径,这样是不对的 = = 这样只得了20分!
因为这个点可能不合适,因此我们要用的stack 最后输出stack即可!
详细见代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define mr make_pair
#include<stack>
using namespace std;
const int maxn = 10001;
bool g[maxn][maxn];
int n,m;
int num[10001];
bool vis[maxn][maxn];
vector<int>G[maxn];
int fa[maxn];
stack<int>sk;
int find(int x){
return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
void add(int x,int y){
int xx = find(x);
int yy = find(y);
if (xx != yy)fa[yy] = xx;
}
void dfs(int k){
int len = G[k].size();
for (int i = 0; i < len; ++i){
int t = G[k][i];
if (!vis[k][t]){
vis[k][t] = vis[t][k] = 1;
dfs(t);
sk.push(t);
}
}
}
int main(){
scanf("%d %d", &n, &m);
for (int i = 0; i <= n; ++i)fa[i] = i;
for (int i = 0; i < m ;++i){
int u,v;
scanf("%d %d",&u,&v);
add(u,v);
G[u].push_back(v);
G[v].push_back(u);
num[u]++;
num[v]++;
}
for (int i = 1; i <= n; ++i)sort(G[i].begin(),G[i].end());
bool GO = 1;
int t1 = find(1);
for (int i = 1; i <= n; ++i){
if (find(i) != t1){
GO = 0;
break;
}
}
if (!GO)return 0 * puts("-1");
int sum = 0;
for (int i = 1; i <= n; ++i)if (num[i] & 1)++sum;
if (sum != 0 && sum != 2)return 0 * puts("-1");
if (sum == 2 && (num[1] & 1) == 0) return 0 * puts("-1");
printf("1");
dfs(1);
while(!sk.empty()){
printf(" %d",sk.top());
sk.pop();
}
puts("");
return 0;
}
试题编号: | 201512-4 |
试题名称: | 送货 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: |
问题描述
为了增加公司收入,F公司新开设了物流业务。由于F公司在业界的良好口碑,物流业务一开通即受到了消费者的欢迎,物流业务马上遍及了城市的每条街道。然而,F公司现在只安排了小明一个人负责所有街道的服务。
任务虽然繁重,但是小明有足够的信心,他拿到了城市的地图,准备研究最好的方案。城市中有n个交叉路口,m条街道连接在这些交叉路口之间,每条街道的首尾都正好连接着一个交叉路口。除开街道的首尾端点,街道不会在其他位置与其他街道相交。每个交叉路口都至少连接着一条街道,有的交叉路口可能只连接着一条或两条街道。 小明希望设计一个方案,从编号为1的交叉路口出发,每次必须沿街道去往街道另一端的路口,再从新的路口出发去往下一个路口,直到所有的街道都经过了正好一次。
输入格式
输入的第一行包含两个整数n, m,表示交叉路口的数量和街道的数量,交叉路口从1到n标号。
接下来m行,每行两个整数a, b,表示和标号为a的交叉路口和标号为b的交叉路口之间有一条街道,街道是双向的,小明可以从任意一端走向另一端。两个路口之间最多有一条街道。
输出格式
如果小明可以经过每条街道正好一次,则输出一行包含m+1个整数p
1, p
2, p
3, ..., p
m
+1,表示小明经过的路口的顺序,相邻两个整数之间用一个空格分隔。如果有多种方案满足条件,则输出字典序最小的一种方案,即首先保证p
1最小,p
1最小的前提下再保证p
2最小,依此类推。
如果不存在方案使得小明经过每条街道正好一次,则输出一个整数-1。
样例输入
4 5
1 2 1 3 1 4 2 4 3 4
样例输出
1 2 4 1 3 4
样例说明
城市的地图和小明的路径如下图所示。
样例输入
4 6
1 2 1 3 1 4 2 4 3 4 2 3
样例输出
-1
样例说明
城市的地图如下图所示,不存在满足条件的路径。
评测用例规模与约定
前30%的评测用例满足:1 ≤ n ≤ 10, n-1 ≤ m ≤ 20。
前50%的评测用例满足:1 ≤ n ≤ 100, n-1 ≤ m ≤ 10000。 所有评测用例满足:1 ≤ n ≤ 10000,n-1 ≤ m ≤ 100000。 |