大体题意:
有向图中是否是任意两个点都是联通的!
思路:
有向图的强联通分量表述的就是 是否任意两个点是联通的!
那么直接判断 强联通分量是不是1个即可!
Tarjan算法!不用记录具体的强联通分量,直接++结果即可!
可以用vector 建图!
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 10000 + 10;
vector<int>g[maxn];
bool inStack[maxn];
int Stack[maxn],top,Tar;
int dfn[maxn],low[maxn];
int n,m,Time;
void init(){
memset(inStack,-1,sizeof inStack);
memset(dfn,-1,sizeof dfn);
top = Tar = Time = 0;
for (int i = 0; i <= n; ++i)g[i].clear();
}
void dfs(int k){
dfn[k] = low[k] = ++Time;
Stack[++top] = k;
inStack[k] = 1;
int len = g[k].size();
for (int i = 0; i < len; ++i){
int v = g[k][i];
if (dfn[v] == -1){
dfs(v);
low[k] = min(low[k],low[v]);
}
else if (inStack[v]){
low[k] = min(low[k],dfn[v]);
}
}
if (dfn[k] == low[k]){
++Tar;
int cur = Stack[top];
while(cur != k){
inStack[cur] = 0;
cur = Stack[--top];
}
inStack[cur] = 0;
--top;
}
}
int main(){
while(scanf("%d %d",&n, &m) == 2 && (n || m)){
init();
for (int i = 0; i < m; ++i){
int u,v;
scanf("%d %d",&u, &v);
g[u].push_back(v);
}
for (int i = 1; i <= n; ++i){
if (dfn[i] == -1) dfs(i);
}
if (Tar == 1)puts("Yes");
else puts("No");
}
return 0;
}
迷宫城堡
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 13165 Accepted Submission(s): 5873
Problem Description
为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
Sample Input
3 3 1 2 2 3 3 1 3 3 1 2 2 3 3 2 0 0
Sample Output
Yes No
Author
Gardon
Source
Recommend