HDU 1269 迷宫城堡 tarjan算法求强连通分量

  基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等,那这个点就在一个强连通分量里面,此时从栈中向外取出元素,知道取出的元素与这个点的值相等时结束,我们所有取出的点与这个点在同一个强连通分量里。下面是代码,其实代码里本来不需要id数组记录点属于哪个强连通分量的,因为题目没有做要求,但是为了保留模板完整还是带着了,以供以后复习使用。

#include<cstdio>
#include<stack>
#include<cstring>
#include<iostream>
using namespace std;
#define maxn 10010
struct EDGE
{
    int to,nxt;
}edge[maxn*10];
int dfn[maxn],low[maxn],tot,num,id[maxn];
int head[maxn];
stack<int>s;
void tarjan(int u,int fa)
{
    dfn[u] = low[u] = ++tot;
    for(int i = head[u];i != -1;i = edge[i].nxt)
    {
        int v = edge[i].to;
        s.push(v);
        if(!dfn[v])
        {
            tarjan(v,u);
            low[u] = min(low[u],low[v]);
        }
        else if(id[v] == -1) low[u] = min(low[u],dfn[v]);
    }
    if(low[u] == dfn[u])
    {
        num++;
        while(!s.empty())
        {
            int num1 = s.top();
            s.pop();
            id[num1] = num;
            if(num1 == u)
            {
                break;
            }
        }
    }
    return;
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        if(!n && !m) break;
        memset(head,-1,sizeof(head));
        int a,b;
        for(int i = 0;i < m;i++)
        {
            scanf("%d%d",&a,&b);
            edge[i].to = b;
            edge[i].nxt = head[a];
            head[a] = i;
        }
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        while(!s.empty()) s.pop();
        tot = 0,num = 0;
        memset(id,-1,sizeof(id));
        for(int i = 1;i <= n;i++)
        {
            if(!dfn[i]) s.push(i),tarjan(i,-1);
        }
        if(num == 1) puts("Yes");
        else puts("No");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/jifahu/p/5506255.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值