大体题意:
给你n 个圆形派,有F+1个人来分这n 个派,每个人得到派的面积必须一样大,求最大面积(派必须是完整的,不能拼接!)
思路:
二分,我们直接二分答案x,看这个x合适不合适的标准是 能不能在n 个圆形派中,分出面积为x 的个数不少于f+1个,不行的话,继续搜!
一个面积为S的派能分面积为x 的个数为 S/x
详细见代码:
错了很多遍,注意二分的边界问题!!
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const double pi = acos(-1.0);
int n,f;
int a[10007];
bool judge(double m){
int sum = 0;
for (int i = 0; i < n; ++i){
sum += (int)(pi*a[i]*a[i]/m);
}
return sum >= f+1;
}
int main(){
int T;
scanf("%d",&T);
while (T--){
scanf("%d %d",&n, &f);
double Max = 0;
for (int i = 0; i < n; ++i){
scanf("%d",a+i);
}
double l = 0, r = 1e9+7;
while(r - l > 1e-5){
double m = (l+r)/2;
if (judge(m))l = m;
else r=m;
}
printf("%.4f\n",l );
}
return 0;
}