UVA 1658 Admiral (最小费用流)

题意:

给你n 个点和m 个边,告诉你每个边的权值,要求从1~n 找出两条不想交的线路,使得他们的权值之和最小? 输出最小权值之和?

思路:

因为是两条不想交线路,那么除了1和n 其余的点 只能走一次, 1和 n 只能走2次,因此 我们这里拆点,  1和 n 拆成  容量为2 费用为0的边。

其余的点拆成 容量为1  费用为0 的边。

并且每个边也只能走一次,因此边也是容量为1  费用为cost 的边。

直接求最小费用流就可以了。

吐槽:

inf 开的稍微大一点, 开成了1w 还wa了一次, 开成100w就好了

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;

const int maxn = 2000 + 23;

const int inf = 1000000;

struct Edge{
    int from, to, cap, flow, cost;
};

struct MCMF{
    int n, m, s, t;
    vector<Edge> edges;
    vector<int> G[maxn];
    int inq[maxn];
    int d[maxn];
    int p[maxn];
    int a[maxn];

    void init(int n){
        this->n = n;
        for (int i = 0; i < n; ++i) G[i].clear();
        edges.clear();
    }

    void AddEdge(int from, int to, int cap,int cost){
        edges.push_back((Edge){from,to, cap,0, cost});
        edges.push_back((Edge){to, from, 0,0, -cost});
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BellmanFord(int s,int t, int &flow,int &cost){
        for (int i = 0; i < n; ++i) d[i] = inf;
        memset(inq, 0, sizeof inq);
        d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = inf;
        queue<int > Q;
        Q.push(s);
        while(!Q.empty()){
            int u = Q.front(); Q.pop();
            inq[u] = 0;
            for (int i = 0; i < G[u].size(); ++i){
                Edge& e = edges[G[u][i] ];
                if (e.cap > e.flow && d[e.to] > d[u] + e.cost){
                    d[e.to] = d[u] + e.cost;
                    p[e.to] = G[u][i];
                    a[e.to] = min(a[u], e.cap-e.flow);
                    if (!inq[e.to]){
                        Q.push(e.to);
                        inq[e.to] = 1;

                    }
                }
            }
        }
        if (d[t] == inf) return false;
        flow += a[t];
        cost += d[t] * a[t];
        int u = t;
        while(u != s){
            edges[p[u] ].flow += a[t];
            edges[p[u]^1 ].flow -= a[t];
            u = edges[p[u] ].from;
        }
        return true;
    }
    int Mincost(int s,int t){
        int flow = 0, cost = 0;
        while(BellmanFord(s,t,flow,cost));
        return cost;
    }
}mcmf;

int main(){

    int n,m;
    while(~scanf("%d %d",&n, &m)){
        mcmf.init(2*n+7);
        for (int i = 2; i < n; ++i){
            mcmf.AddEdge(i,i+n,1,0);
        }
        mcmf.AddEdge(1,n+1,2,0);
        mcmf.AddEdge(n,n+n,2,0);
        for (int i = 0; i < m; ++i){
            int u,v,c;
            scanf("%d %d %d",&u, &v, &c);
            mcmf.AddEdge(u+n,v,1,c);
        }
        int ans = mcmf.Mincost(1,2*n);
        printf("%d\n",ans);
    }

    return 0;
}
/**
6 11
1 2 23
1 3 12
1 4 99
2 5 17
2 6 73
3 5 3
3 6 21
4 6 8
5 2 33
5 4 5
6 5 20

ans = 86
**/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值