题意:
给你n 个点和m 个边,告诉你每个边的权值,要求从1~n 找出两条不想交的线路,使得他们的权值之和最小? 输出最小权值之和?
思路:
因为是两条不想交线路,那么除了1和n 其余的点 只能走一次, 1和 n 只能走2次,因此 我们这里拆点, 1和 n 拆成 容量为2 费用为0的边。
其余的点拆成 容量为1 费用为0 的边。
并且每个边也只能走一次,因此边也是容量为1 费用为cost 的边。
直接求最小费用流就可以了。
吐槽:
inf 开的稍微大一点, 开成了1w 还wa了一次, 开成100w就好了
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int maxn = 2000 + 23;
const int inf = 1000000;
struct Edge{
int from, to, cap, flow, cost;
};
struct MCMF{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn];
void init(int n){
this->n = n;
for (int i = 0; i < n; ++i) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap,int cost){
edges.push_back((Edge){from,to, cap,0, cost});
edges.push_back((Edge){to, from, 0,0, -cost});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int s,int t, int &flow,int &cost){
for (int i = 0; i < n; ++i) d[i] = inf;
memset(inq, 0, sizeof inq);
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = inf;
queue<int > Q;
Q.push(s);
while(!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); ++i){
Edge& e = edges[G[u][i] ];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap-e.flow);
if (!inq[e.to]){
Q.push(e.to);
inq[e.to] = 1;
}
}
}
}
if (d[t] == inf) return false;
flow += a[t];
cost += d[t] * a[t];
int u = t;
while(u != s){
edges[p[u] ].flow += a[t];
edges[p[u]^1 ].flow -= a[t];
u = edges[p[u] ].from;
}
return true;
}
int Mincost(int s,int t){
int flow = 0, cost = 0;
while(BellmanFord(s,t,flow,cost));
return cost;
}
}mcmf;
int main(){
int n,m;
while(~scanf("%d %d",&n, &m)){
mcmf.init(2*n+7);
for (int i = 2; i < n; ++i){
mcmf.AddEdge(i,i+n,1,0);
}
mcmf.AddEdge(1,n+1,2,0);
mcmf.AddEdge(n,n+n,2,0);
for (int i = 0; i < m; ++i){
int u,v,c;
scanf("%d %d %d",&u, &v, &c);
mcmf.AddEdge(u+n,v,1,c);
}
int ans = mcmf.Mincost(1,2*n);
printf("%d\n",ans);
}
return 0;
}
/**
6 11
1 2 23
1 3 12
1 4 99
2 5 17
2 6 73
3 5 3
3 6 21
4 6 8
5 2 33
5 4 5
6 5 20
ans = 86
**/