HDU 3341 Lost's revenge (AC自动机 + dp[优化好多= =])

101 篇文章 1 订阅
15 篇文章 0 订阅

题意:

给你n 个DNA 串,  最后给你一个匹配串, 问你匹配串随便排列后 最多能匹配多少DNA串?

思路:

一个串匹配多个串, 是AC自动机。

考虑dp

因为是随便排列, 因此就得考虑 用x1 个A, x2 个C, x3 个G, x4 个T 能匹配多少个串, 这样不会有顺序问题。

刚开始考虑的是 dp[i][j][k] 表示构造串的第i 位, 目前在自动机的j 结点,  ACGT数量状态为K 的最大方案数。

 然而光考虑如何雅压缩ACGT的状态了, 这个时间复杂度 是承受不了的。


看了网上题解后 , 大家都是二维dp。

感觉优化的很厉害。。


其实第一维没有用, 这样只会造成空间的浪费。

我们直接令dp[i][j] 表示 目前在自动机的i 结点, ACGT数量状态为j 的方案数。

其实想一想 每个结点都有j 个状态, 不会造成循环重复转移这个问题。


在转移上也有个小问题。

要先枚举ACGT的数量状态这一维, 在枚举 在自动机哪个结点i。 

因为刚开始肯定是数量很小的, 逐步向数量多转移。 因为要先枚举 数量状态j。

如果枚举在哪个节点的话, 这个结点可能会被后面的节点重新转移到(自动机fail 指针 会指向深度小的节点)。 所以注意一下好了。



哦对, 在说一下,如和存取ACGT数量状态。

这个题不仅卡时间 , 还卡内存。

因此这一步要好好优化一下。

字符串的长度最大是40.

我们记录Hash[40][40][40][40]的话, 会MLE。

但又不是每个字母都可以到40, 只是总和是40.

因此我们可以把字符串存下来后, 依次枚举每个字符的数量, 然后四层循环开始存状态。

把每个循环 离散化成一个数字,依次累加即可。

我们算一下, 长度是40, 那么分成四部分乘积最大,显然长度是10.  因此空间复杂度是 11 * 11 * 11 * 11 , 开15w 就很稳了。


代码参考一下把, 相当挫:


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
int get(char ch){
    if (ch == 'A') return 0;
    if (ch == 'C') return 1;
    if (ch == 'G') return 2;
    if (ch == 'T') return 3;
}

const int maxn = 500 + 7;

int Hash[41][41][41][41];
int cur;
int dp[maxn][15000];
int mp[15000];
struct Trie{
    int L, root;
    int next[maxn][4];
    int fail[maxn];
    int flag[maxn];
    int sum[maxn];
    void init(){
        L = 0;
        root = newnode();
    }

    int newnode(){
        for (int i = 0; i < 4; ++i){
            next[L][i] = -1;
        }
        flag[L] = 0;
        sum[L] = 0;
        return L++;
    }
    void insert(char* s){
        int len = strlen(s);
        int nod = root;
        for (int i = 0; i < len; ++i){
            int id = get(s[i]);
            if (next[nod][id] == -1){
                next[nod][id] = newnode();
            }
            nod = next[nod][id];
        }
        flag[nod]++;
    }

    void bfs(){
        fail[root] = root;

        queue<int>q;
        for (int i = 0; i < 4; ++i){
            if (next[root][i] == -1){
                next[root][i] = root;
            }
            else {
                fail[next[root][i]] = root;
                q.push(next[root][i]);
            }
        }

        while(!q.empty()){
            int u = q.front(); q.pop();

            for (int i = 0; i < 4; ++i){

                if (next[u][i] == -1){
                    next[u][i] = next[fail[u] ][i];
                }
                else {
                    fail[next[u][i] ] = next[fail[u] ][i];
                    q.push(next[u][i]);
                }
            }
        }

        for (int i = 0; i < L; ++i){
            int tmp = i;
            while(tmp != root){
                sum[i] += flag[tmp];
                tmp = fail[tmp];
            }
        }
    }

    void solve(char* s){
        cur = 0;
        int cnt[4] = {0};

        int goal;
        int len = strlen(s);
        for (int i = 0; i < len; ++i){
            cnt[get(s[i]) ]++;
        }

        for (int i = 0; i <= cnt[0]; ++i){
            for (int j = 0; j <= cnt[1]; ++j){
                for (int k = 0; k <= cnt[2]; ++k){
                    for (int l = 0; l <= cnt[3]; ++l){
                        Hash[i][j][k][l] = cur++;
                        int v = 0;
                        v = v * 100 + i;
                        v = v * 100 + j;
                        v = v * 100 + k;
                        v = v * 100 + l;
                        mp[cur-1] = v;
                    }
                }
            }
        }

        goal = Hash[cnt[0] ][cnt[1] ][cnt[2] ][cnt[3] ];


        memset(dp,-1,sizeof dp);

        dp[0][0] = 0;

        int la[4] = {0};

        for (int k = 0; k < cur; ++k){
            for (int j = 0; j < L; ++j){
                for (int l = 0; l < 4; ++l){
                    if (dp[j][k] == -1) continue;
                    int v = mp[k];
                    la[3] = v % 100; v /= 100;
                    la[2] = v % 100; v /= 100;
                    la[1] = v % 100; v /= 100;
                    la[0] = v % 100; v /= 100;

                    int nx = next[j][l];

                    la[l]++;
                    if (la[l] > cnt[l])continue;
                    int id = Hash[la[0] ][la[1] ][la[2] ][la[3] ];
                    dp[nx][id] = max(dp[nx][id], dp[j][k] + sum[nx]);
                }
            }
        }



        int ans = 0;

        for (int i = 0; i < L; ++i){
            ans = max(ans, dp[i][goal]);
        }

        printf("%d\n", ans);
    }


}ac;

char s[60];
int main(){
    int n, ks = 0;
    while(~scanf("%d", &n) && n){
        ac.init();
        for (int i = 0; i < n; ++i){
            scanf("%s", s);
            ac.insert(s);
        }
        scanf("%s", s);
        ac.bfs();
        printf("Case %d: ", ++ks);
        ac.solve(s);
    }

    return 0;
}
/**
1
AC
ACAC
**/

Lost's revenge

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 4366    Accepted Submission(s): 1214


Problem Description
Lost and AekdyCoin are friends. They always play "number game"(A boring game based on number theory) together. We all know that AekdyCoin is the man called "nuclear weapon of FZU,descendant of Jingrun", because of his talent in the field of number theory. So Lost had never won the game. He was so ashamed and angry, but he didn't know how to improve his level of number theory.

One noon, when Lost was lying on the bed, the Spring Brother poster on the wall(Lost is a believer of Spring Brother) said hello to him! Spring Brother said, "I'm Spring Brother, and I saw AekdyCoin shames you again and again. I can't bear my believers were being bullied. Now, I give you a chance to rearrange your gene sequences to defeat AekdyCoin!".

It's soooo crazy and unbelievable to rearrange the gene sequences, but Lost has no choice. He knows some genes called "number theory gene" will affect one "level of number theory". And two of the same kind of gene in different position in the gene sequences will affect two "level of number theory", even though they overlap each other. There is nothing but revenge in his mind. So he needs you help to calculate the most "level of number theory" after rearrangement.
 

Input
There are less than 30 testcases.
For each testcase, first line is number of "number theory gene" N(1<=N<=50). N=0 denotes the end of the input file.
Next N lines means the "number theory gene", and the length of every "number theory gene" is no more than 10.
The last line is Lost's gene sequences, its length is also less or equal 40.
All genes and gene sequences are only contains capital letter ACGT.
 

Output
For each testcase, output the case number(start with 1) and the most "level of number theory" with format like the sample output.
 

Sample Input
  
  
3 AC CG GT CGAT 1 AA AAA 0
 

Sample Output
  
  
Case 1: 3 Case 2: 2
 

Author
Qinz@XDU
 

Source
 

Recommend
lcy
 

Statistic |  Submit |  Discuss |  Note

### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值