
pytorch
文章平均质量分 63
以实战为线索,学习pytorch的方方和面面
ForeverYang2015
IT搬砖工!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
yolov8-pos/yolov11-pos openvino C++部署
但是这里由于硬件平台为工控机,windows系统,考虑到工控机无GPU,则需使用openvino 进行加速,openvino 是英特尔开发的针对CPU的加速模型推理的库,在Python\C++\C#,均有相应接口。可把摄像头检测到的草莓边框和2关键点、果柄边框给显示出来,我的CPU是 12400K , FPS还挺高,有40+,不过是n模型运行快,换成s模型,速度则会降至20帧左右。省略,版本4点几的就行,我用的是4.8.0 ,可以参看,需要配置 Release版的。下面Opencv的,看自己的路径。原创 2025-07-19 17:38:50 · 890 阅读 · 0 评论 -
yolov8-pos/yolov11-pos 训练
2*3, 也即2个点,每个点有3个数值, x , y , 属性(无效0,不可见1,可见2),无效就是这个点不在图像中了,不可见就是点在图像中,但是被遮挡,可见就是点在图像中,且未被遮挡。我的识别对象主要有草莓熟果、果梗,这2类对象,关键点数量为2,草莓的头和尖,果梗虽然不识别关键点,但是也必须有2个点,这里我就取边框的 (中心点x坐标,边框的y坐标top坐标)和(中心点x坐标,边框的y坐标bottom坐标 ) 像是下面的。训练完成后,将得到pt格式权值文件,onnx格式权值文件。原创 2025-07-17 17:36:27 · 975 阅读 · 0 评论 -
pytorch(11)-- crnn 车牌端到端识别
本文主要记录了使用crnn 对车牌图片做端到端识别,即不用对车牌字符做逐个字符分割识别,车牌第一个字符为汉字,共有31个,第2个字符为去除了“O”和“I”这2个大写字母,工24个大写字母,其余5位均为24个大写字母+10个阿拉伯数字的形式,再加上使用CRNN,需要有空白字符,放在第65位,共有66个字符......原创 2022-08-26 15:42:32 · 7458 阅读 · 12 评论 -
pytorch(10)-- 知识蒸馏
一、前言本篇讨论知识蒸馏,简单而言就是使用一个复杂但性能较好的模型作为教师模型,带动一个简单结构的学生模型迭代训练,使学生模型的数据拟合结果向教师模型结果趋近,从而提高简单模型的效果代码将使用cifa10数据集上训练达到95%准确率的模型作为教师模型,对一个简单3层卷积网络做蒸馏二、代码 教师模型采用 pytorch官方导出,加载训练好的模型teach_model = resnet18(pretrained=False)incha...原创 2022-02-18 15:28:40 · 1908 阅读 · 2 评论 -
pytorch(9)-- 利用resnet18使cifa10数据集达到95%准确率
一、前言本文尝试使用resnet18训练测试cifa10数据集,尽可能取得较高的准确率,关键在于使用预训练模型,在trainsform中 ,将数据resize 到 224,224 , 加入随机上下左右翻转数据增强,再使用imagnet的均值方差做归一化。二、代码# -*- coding: utf-8 -*-"""Created on Tue Feb 8 09:53:54 2022trainval.py"""import torchimport torchvisionimp原创 2022-02-10 11:02:07 · 4896 阅读 · 0 评论 -
pytorch(8)-- resnet101 迁移学习记录
一、前言 本篇记录使用 pytorch 官方 resnet101 实现迁移学习,迁移学习是当前深度学习领域的一系列通用的解决方案,而不是一个具体的算法模型。Pre-training + fine-tuning(预训练+调参) 的迁移学习方式是现在深度学习中一个非常流行的迁移学习方式,有以下3步(1)把预训练模型当做特征提取器: TensorFlow或者Pytorch都有ImageNet上预训练好的模型,将最后一层全连接层(原始的是1000个类别或者更多)改成你自己的分类任务的种类进行输出,或...原创 2021-10-08 18:10:31 · 2247 阅读 · 0 评论 -
pytorch(7)--目标检测数据很少时候的数据增强
一、前言 记录一个用于yolo 目标检测的数据增强代码,当数据很少时,可对数据做 亮度对比度随机变化、裁减、上下左右翻转。二、上代码import PIL.Image as Imageimport osfrom torchvision import transforms as transformsimport randomfrom PIL import ImageDrawimport cv2import numpy as npdef getBoxTxt( txt_pa..原创 2021-06-03 20:21:31 · 497 阅读 · 0 评论 -
pytorch(6)--深度置信网络
一、前言 本文主要使用pytorch 实现的DBN网络,用于对数据做回归,单个数据维度为(N,21),其中N为不定长,输出则为(N,1),对应N个值DBN网络结构: 首层神经元数量输入为变量长度21,中间为RBM网络,如本篇使用的网络结构诶[128,64,32,16],为一个4层的RBM网络结构,训练时RBM需要逐层做训练;在RBM训练后,再接上BP神经网络,再对BP网络做微调,回归损失函数使用MSE loss。二、深度置信网络实现代码#DBN.pyimpor...原创 2021-04-26 11:37:57 · 3929 阅读 · 3 评论 -
pytorch(5)--unet,unet++ 、 融合deep supervision的unet++
一、前言 本篇总结unet、unet++及添加了deep supervision的unet++ 原理及代码pytorch实现二、原理三、代码原创 2021-04-25 11:52:07 · 2591 阅读 · 6 评论 -
pytorch(4)--conv3d
一、前言 本篇主要记录pytorch 下的 conv3d 原理及一个网络示例C3D参考自:https://blog.csdn.net/weixin_43844219/article/details/104134838二、原理 三、代码实现pytorch 的一个示例网络,链接https://github.com/jjboy/c3d-pytorchC3D 实现如下:import torchimport torch.nn as nnclass C3D(n...原创 2021-04-14 09:24:44 · 3228 阅读 · 2 评论 -
pytorch(3)--VGG block和 Resnet block
一、前言 本篇记录 VGG Block和Resnet Block 经典结构二、VGGblock VGG Block 可由两层conv3或三层conv3组成,两层的感受野和一层conv5一样,三层conv3的感受野和一层conv7是一样的,但是能够减少计算量,以下为不同的VGGblock搭配的VGG网络包含两层conv3的VGG block 代码如下,CBR-CBR,无池化层class VGGBlock(nn.Module): def __init__(self,...原创 2021-03-22 20:49:55 · 4507 阅读 · 0 评论 -
pytorch(2)--记录自己常用到的小网络
一、前言 本篇记录自己常用到的小网络,分类简单的小图片时,可以获得较好的效果二、代码class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(3, 6, 5, padding=2), nn.MaxPool2d(kernel_size=2, s..原创 2021-03-22 16:39:08 · 252 阅读 · 0 评论 -
pytorch(1)--分类图片
一、前言 刚毕业用的是大火大热的caffe,如今却逐渐无人问津,2020年转向pytorch,在此记录下搬过的砖... 首篇记录下pytorch 分类图片代码二、训练集准备 本次对7类图片做训练和预测,7类图片分别保存于7个文件夹内,7个文件夹保存于dataset文件夹内,如下 以下代码 genTxt.py 生成用于 训练、验证、测试的txt文件#coding=utf-8#genTxt.pyimport os,cv2import random,s...原创 2021-03-18 11:34:30 · 705 阅读 · 1 评论