数据集格式

1、xml

使用labelmg工具对图片进行标注得到xml格式文件,以图片为例介绍内容信息:

对上面的图片进行标注后,得到xml文件:

其内容分类两部分:

  1. 第一个黑色方框,图像的整体部分,包括图像的名称、位置、长宽高等等;
  2. 第二个黑色方框,标注框信息,每个红色框就是一个object标签(表示一个标注框)的信息,包括目标类别名称、位置信息等

xml内的信息是由一个个对象组成,标签之间存在层级关系,例如annotation为最上层的标签,就是这个xml所在的文件夹,其他标签为字标签。

2、xml -> csv

字符(逗号)分割值。

每个object标签代表一个标注框,都会在csv文件中生成一条数据,每天数据的属性为:图片文件名、宽度、高度、类别、框的左上角x坐标、框的左上角y、框的右上角x、框的右上角y。

xml转csv的代码如下:

# -*- coding: utf-8 -*-
"""
将文件夹内所有XML文件的信息记录到CSV文件中
"""

import os  
import glob  
import pandas as pd  
import xml.etree.ElementTree as ET  

  
def xml_to_csv(path):          #path:annotations的文件夹路径
    xml_list = []  
    for xml_file in glob.glob(path + '/*.xml'):  #对path目录下的每一个xml文件
        tree = ET.parse(xml_file)  #获得xml对应的解析树
        root = tree.getroot()  #获得根标签annotations
        # print(root)  
        print(root.find('filename').text)  
        for member in root.findall('object'):  #对每一个object标签(框)
            value = (root.find('filename').text,  #在根标签下查找filename标签(图片文件名字),获得文本信息
                     int(root.find('size')[0].text),  #在根标签下找size标签,并获得第0个字标签(width)的文本信息,转化为int
                     int(root.find('size')[1].text),   #在根标签下找size标签,并获得di1个字标签(height)的文本信息,转化为int
                     member[0].text,  #获得object标签的第0个字标签name的文信息
                     int(member[4][0].text),  #获得object的第四个子标签bndbox,获得bndbox的第0个字标签(xmin)的文本信息,转化为int
                     int(float(member[4][1].text)),  #获得object的第四个子标签bndbox,获得bndbox的第1个字标签(ymin)的文本信息,转化为int
                     int(member[4][2].text),  #获得object的第四个子标签bndbox,获得bndbox的第2个字标签(xmax)的文本信息,转化为int
                     int(member[4][3].text)  #获得object的第四个子标签bndbox,获得bndbox的第3个字标签(ymax)的文本信息,转化为int
                     )  
            xml_list.append(value)  
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']  
    xml_df = pd.DataFrame(xml_list, columns=column_name)  
    return xml_df  
  
def main():  
    for directory in ['train','test','validation']:  #对应train和test文件夹
        #对应根目录下的/images中的train和test文件夹,本脚本要放在voc文件夹下,和annotations是同级的,否则修改getcwd函数
        xml_path = os.path.join(os.getcwd(), 'annotations/{}'.format(directory))   
        xml_df = xml_to_csv(xml_path)  
        xml_df.to_csv('data/whsyxt_{}_labels.csv'.format(directory), index=None)  #xml转化为对应的csv保存
        print('Successfully converted xml to csv.')  

main()

对应的xml文件如下图:

最后得到两个文件:

文件打开类似于这样的:

其中的filename只是图片文件的名字,不包括路径。

3、xml转换为tfrecord

 每个图片会生成一个xml文件,批量的将xml文件转化成tfrecord格式。

 

4、csv转换成tfrecord

将多个xml文件写入到一个csv文件中去,每一行是一个xml文件的信息,接下来直接将这个csv文件转换成tfrecord格式就可以了,很方便快。

由于图像和标签值不在一起,所以要将整张图片信息和csv文件合并起来,整合成为tfrecord格式写入到本地中,用于训练。

代码来自tensorflow/object_dection/models-master/research/object_detection/test_generate_tfrecord.py:

Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=data/train.record

  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=data/test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
"""
    DEFINE_string定义了个命令行参数

    flage_name:csv_input,参数名字
    defalut_name:默认值 ,这里的默认值是data/test_labels.csv
    docstring:对该参数的说明

    可以使用tf.app.flags.FLAGS取出该参数的值:
    FLAGS = tf.app.flags.FLAGS
    print(FLAGS.csv_input),输出的就是data/test_labels.csv

"""
flags.DEFINE_string('csv_input', 'data/test_labels.csv', 'Path to the CSV input')
flags.DEFINE_string('output_path', 'data/test.record', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
# 修改成你自己的标签
def class_text_to_int(row_label):
    if row_label == 'face':
        return 0
    elif row_label == 'cat':
        return 1
    #............
        

def split(df, group):
    """namedtuple工厂函数,返回一个名为`data`的类,并赋值给名为data的变量
    定义:Point = namedtuple('Point', ['x', 'y']) 
    创建对象:p = Point(11, y=22) 
                p[0] + p[1] 输出 33
    解包:x, y = p
         x,y 输出:(11, 22)
    访问:p.x + p.y  输出 33
        
    """
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]

#读取每张图片,得到每张图片的信息,将每张图片信息和图片里的object标注框信息(在csv里)合并在一起
#group
#path:iamge目录
def create_tf_example(group, path):
    #image目录 + image的名字 = image的绝对路径路径
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))
    #图像所有信息encoded_jpg和object信息整合一起
    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), 'images/test')    #一个csv文件最后生成一个tfrecord文件
    examples = pd.read_csv(FLAGS.csv_input)//读csv文件内容,返回pandas对象矩阵
        """
             filename  width  height   class  xmin  ymin  xmax  ymax
        0  000001.jpg    353     500     dog    43   233   205   362
        1  000001.jpg    353     500  person   117    12   296   226
        2  000002.jpg    335     500   train   122   188   220   299
        
        """
    grouped = split(examples, 'filename')
        """
        [
        data(filename='000002.jpg', object=     filename  width  height  class  xmin  ymin  xmax  ymax
                2  000002.jpg    335     500  train   122   188   220   299), 
        #两个1.jpg是因为这张图片里面有两个object        
        data(filename='000001.jpg', object=     filename  width  height   class  xmin  ymin  xmax  ymax
                0  000001.jpg    353     500     dog    43   233   205   362
                1  000001.jpg    353     500  person   117    12   296   226)
        ]
        
        """
    for group in grouped:
        tf_example = create_tf_example(group, path)//将每个图片的标注信息和图像信息结合在一起
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    tf.app.run()

 

同理还有train_generate_tfrecord.py:

"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=data/train.record

  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=data/test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string('csv_input', 'data/train_labels.csv', 'Path to the CSV input')
flags.DEFINE_string('output_path', 'data/train.record', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
    if row_label == 'face':
        return 1
    else:
        0
        

def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), 'images/train')
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    tf.app.run()

 

转载于:https://www.cnblogs.com/pacino12134/p/11291398.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值