OpenClash与Tailscale冲突得问题

1.问题描述:开了openclash之后,tailscale就用不了。tailscale ping XXX.XXX.XXX.XXX 可以成功。但是用cmd的ping就不通。

2.tailscale登录得时候,加上这两个参数:--accept-dns=false--netfilter-mode=off
示例:tailscale up --accept-dns=false --accept-routes --advertise-routes=10.0.0.0/24 --login-server=https://scale.example.com --netfilter-mode=off 其中 “https://scale.example.com” 是自建的headscale。

3.两个OpenWRT都要自建一个tailscale接口 ,记住两边都要建。如图
家中的WRT
公司的WRT
4.接口具体内容,两边都是一样的。这里就写一个例子:
第一步:先建一个防火墙 tailscale
tailscale防火墙
tailscale接口
接口的防火墙设置
文字版如下:

  • 网络 - 接口 - 新增

  • 常规设置
    - 名称:tailscale
    - 协议:不配置协议
    - 设备:tailscale0
    - 保存

  • 防火墙设置

    • 自定义:tailscale
    • 保存
  • 网络 - 防火墙,找到刚刚创建的防火墙 tailscale ,编辑

    • 常规设置
      • 转发:接收
      • 动态 IP 伪装:勾选
      • MSS 钳制:勾选
      • 允许转发到目标区域:lan、wan
      • 允许来自源区的转发:lan
  • 在和 OpenClash 同时使用时,还需要在 OpenClash - 插件设置 - 流量控制 - 本地 IPv4 绕过地址 追加100.64.0.0/10

  • 如果 Openwrt 作为拨号的主路由,还需要将 服务 - UPnP - 常规设置 - 启用 IGDv1 模式(√) ,否则无法打洞(此外还尝试过把 Tailscale 防火墙的入站 / 出站 / 转发设为 接收 ,不确定是否也是影响因素)

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值