【论文翻译】EEG癫痫检测:概念、技术、挑战和未来趋势

【论文翻译】 EEG癫痫检测:概念、技术、挑战和未来趋势

原文:EEG seizure detection: concepts, techniques, challenges, and future trends https://doi.org/10.1007/s11042-023-15052-2

摘要

中枢神经系统疾病通常被称为癫痫。在癫痫中大脑活动变得异常,导致行为异常或癫痫发作,有时失去意识。因此,癫痫患者在日常生活中面临的问题是,他们必须采取预防措施来适应这种情况,特别是当他们使用重型设备时,如重型车辆。癫痫研究主要依靠脑电描记法( EEG )信号来评估癫痫发作时的大脑活动。在EEG信号中人工判断癫痫发作的位置是比较麻烦和耗时的。自动检测框架是帮助医生和患者采取适当预防措施的主要工具之一。本文综述了癫痫心理障碍和癫痫发作的类型,对EEG数据进行的预处理操作,从信号中提取的一般特征,以及对该问题中使用的分类程序的详细看法,并对这一创新主题的难点和未来研究方向提出了见解。因此,本文对癫痫发作过程的最新方法进行了综述,并为研究人员提供了一个使用物联网和机器学习分类器的基于EEG的癫痫发作自动检测系统,用于智能背景下的远程患者健康监测。最后,探讨了EEG癫痫检测中的挑战和开放研究点。

1.介绍

癫痫是一种神经系统疾病,已被认为是一个世界性的问题,是人类生命的主要危险之一。世界卫生组织( WHO )的报告显示,全世界约有5 000万人患有癫痫,这使得癫痫极有可能成为全球公认的最广泛的神经系统疾病。癫痫病对女性、男性甚至儿童都有影响。癫痫发作的症状多种多样。
少数癫痫患者群体在一次癫痫发作中只会默默地瞪眼几分钟,而另一些癫痫患者的手臂或腿部则会反复地肌肉抽搐。有一次癫痫发作并不意味着你有癫痫。癫痫诊断一般需要至少两次无刺激的发作。为了检测大脑异常,脑电图( EEG )是广泛用于测量人脑电紊乱的技术之一,用于癫痫发作的诊断。
在癫痫发作过程中,EEG信号的正常形态会发生改变。因此,根据EEG信号特征的不同,可以将癫痫患者的状态分为正常、发作前期和发作期3个阶段。癫痫患者在癫痫实际发作之前,大脑中就开始出现许多电紊乱,称之为发作前阶段。为了识别这个阶段的癫痫发作,需要在从正常到发作期的过渡阶段记录患者大脑中的这种电紊乱。因此,在发作前期早期识别癫痫发作的过程可以挽救患者的生存,使他们能够采取预防措施,以防止伤害性和危及生命的事故发生。在EEG测试中,使用糊状物质或帽子将电极与头皮相关联。电极记录大脑的电活动。
如前所述,迫切需要一种自动高效的早期识别癫痫发作的方法来挽救每年成千上万癫痫患者的生命,能够在癫痫发作实际发生之前对患者、家属和附近医院进行预警。因此,本系统可以帮助癫痫患者在紧急情况下挽救他们的生命,提高他们的生活质量。
最近,研究人员正在尝试对癫痫发作进行检测,以支持自动诊断系统,帮助临床医生从繁重的工作中解脱出来。在这方面,发表了大量关于癫痫发作识别的研究论文。自动癫痫发作检测可以提高癫痫发作检测的效率,使其更加可靠和快速。因此,该领域吸引了研究人员对频域、时域、时频域、经验模态分解、非线性方法等多种类型的技术和领域进行研究。尽管如此,实验表明,当两种或两种以上的传统方法结合使用时,性能会显著提高。U .拉金德拉讨论了使用EEG信号进行癫痫自动诊断的各种熵,以及熵的应用及其优缺点[4].[124]提出一种基于多域方法的癫痫发作自动检测技术。[102]综述了从EEG数据中检测癫痫发作的模式识别技术,并研究了DWT特征在不同分类器中的性能。局灶性和局灶性特征来确定受癫痫影响的区域[5]。Md沙菲克Islam提出了一种利用深度学习模型( Epilpsy-Net )检测癫痫发作的动态方法。该方法包括深度卷积块、特征注意力模块、残差块和超级柱技术[49]。加埃塔诺、扎扎罗和Luigi Pavone通过研究其在正确识别癫痫发作和减少误报方面的性能来评估癫痫检测系统的性能,并决定其是否可以推广到几个患者[146]。[74]探索可穿戴多模态监测在癫痫中的可能性,并确定癫痫检测的有效策略。
如今,物联网( Internet of Things,IoT )在医疗领域发挥着至关重要的作用,为许多医疗和保健应用提供了重要的解决方案。物联网技术利用可穿戴设备对患者的健康状况进行连续、实时的观测。这些技术也被应用于癫痫患者脑电信号的采集和传输。伴随着这些技术,机器学习算法为从接收到的EEG信号中有效地检测癫痫发作阶段提供了很有前途的解决方案。此外,物联网与人工智能程序和云计算服务相结合,已成为解决医疗护理领域许多问题的强大技术。需要提出一种自动癫痫发作识别框架,利用现有的通信技术与机器学习、物联网和云计算合作,对癫痫发作进行早期识别。
这项工作将使研究人员了解重要的特征提取技术、统计和机器学习分类器以及最近的深度学习算法。本综述的另一个贡献是帮助研究人员识别公开可用的记录癫痫发作信号的数据库。最后,基于本文的研究现状,对未来的研究方向提出了建议。总之,这项工作的主要贡献可以概括如下:

  • 对EEG信号进行概述,探讨癫痫发作检测过程,并提供可用EEG数据集的信息。
  • 回顾了使用各种深度学习模型通过各种模态对癫痫发作进行自动化检测所做的工作。
  • 探索癫痫发作检测中的挑战,以及分析各种模态数据的最佳执行模型。
  • 探索并提出基于人工智能的癫痫发作检测和基于物联网的癫痫发作自动检测。
  • 为这一前沿研究课题提供机会和未来的研究方向。

本文组织如下,第2部分定义了EEG数据的预备知识,可用的数据集和癫痫检测过程,分为三个步骤:预处理步骤,特征提取技术和分类算法。第3节介绍了基于Ai的癫痫发作检测。第4节给出了基于物联网的自动癫痫发作检测。第五部分指出了研究中存在的挑战和未来的研究方向。最后是结论和参考文献。

2.脑电信号采集

本节在了解EEG信号采集方法的基础上,对EEG信号的基本知识和可用的数据集进行探索。

2.1EEG数据

癫痫是由典型的大脑运动的不规律侵入所描述的神经系统问题。在癫痫中,大脑的某些区域或所有区域过度活动,这提示癫痫发作。癫痫发作从一个区域波动到另一个区域,它们可能持续几秒钟而不被注意,它们可能只影响单个手臂或一个腿或整个身体,有时个体最终会失忆。因此,如图1所示,癫痫发作有两种主要类型:全局性和局部性。
癫痫分类和亚分类
全面性发作影响全脑。它导致了意识的缺失,并使整个框架具有惊厥性。局灶性或部分性癫痫发作仅包括大脑的某一特定部位。如图1所示,全面性癫痫发作可细分为失神发作(癫痫小发作)、强直-阵挛发作( Grand mal )、失张力发作、肌阵挛发作、阵挛发作和强直发作。为了诊断癫痫发作,各种筛查技术被开发出来。这些方法包括脑电图( EEG )、脑磁图( MEG )、功能磁共振成像( fMRI )和近红外光谱( NIRS )等。表1给出了各种脑信号采集方式的比较。
各种信号获取方式
EEG是目前最被广泛青睐的信号采集方式。这是由于EEG信号经济、便携,并且在频域上可以获得清晰的节律。脑电信号( EEG )提供了由大脑神经元的离子流所产生的电压变化,反映了大脑的生物电活动。利用EEG信号诊断癫痫费时费力,作为癫痫学家或神经科医生需要对EEG信号进行筛选。此外,还存在人为错误的可能性,因此,开发基于计算机的诊断可能会缓解这些问题。
脑电图( EEG )是一种简单的检测大脑电活动的方法。它通常用于癫痫发作的识别和检查。EEG信号可分为4个阶段,以癫痫患者为标志。这些阶段是一个发作期、发作前期、发作后期和发作间期的状态,如图2所示[17,61]。
EEG不同阶段
EEG信号分为5个主要频段:Alpha 0.5 ~ 4 Hz,Beta 4 ~ 8 Hz,Gamma 8 ~ 12 Hz,Delta 12 ~ 30 Hz和Theta over 30 Hz。如表2所示,在不同的EEG频段上的活动量可以通过频谱分析技术进行量化[32,128]。
EEG频段
EEG信号通常使用表浅头皮电极获得,放置使用10 - 20国际系统,如图3所示。使用10 - 20系统的电极放置是一种用于描绘头皮上电极面积的策略。它依赖于电极面积和大脑皮层之间的关系。每个站点都有一个字母(为了识别叶瓣)和一个字母或数字来识别该区域。字母T、F、C、O和P分别代表颞叶、额叶、中央区、枕叶和顶叶。左半球由( 1、3、5、7)指向,( 2、4、6、8)数字指向右半球。放置在中线上的电极是指使用字母z。较小的数字指的是中线的封闭位置。
在这里插入图片描述

2.2 EEG数据库

数据集对于研究人员和科学家在开发准确和稳健的计算机辅助设计以评估其模型的性能方面起着重要的作用。EEG记录是观察大脑活动的一种广泛的常用工具。这些记录在机器学习分类器中起着至关重要的作用,以探索不同的癫痫发作检测的新方法。如起始发作检测、快速发作检测、病人发作检测、发作定位等。开放的数据集的意义在于提供一个基准来剖析和对比其他数据集的结果。
为了开发和评估自动癫痫发作检测系统,几个公开可用的数据集:CHB-MIT [ 43、127、144、150],ECoG Dataset [ 72、108 ],弗里堡癫痫数据集[ 112、150 ],Bonn癫痫数据集[ 82、119、128、136],BERN - Barcelona数据集[ 44、97 ],Kaggle数据集,Flint-Hills eplipsiae,Hauz Khas和Zenodo数据集。从这些数据集中获得的信号要么从颅内记录,要么从人或动物的头皮记录。表3总结了本公共数据集的补充信息。
在这里插入图片描述

3.癫痫发作检测系统

人工智能( Artificial Intelligence,AI )在医疗领域发挥着重要的支撑和辅助作用。特别是在基于脑电图( EEG )的癫痫检测中,用于癫痫的早期诊断。
癫痫检测过程可以分为三个主要阶段:预处理,特征提取和分类,如图4所示。下面将详细介绍这些阶段。
在这里插入图片描述

3.1 EEG预处理

原始EEG信号是非平稳信号,且空间分辨率较低。EEG信号容易受到伪迹和噪声的影响。这些伪迹可能会影响记录信号的信息和分析。因此,无论在临床诊断还是实际应用中,伪影的识别和去除都是最重要的预处理步骤,以减少其对特征提取阶段的影响。在这个步骤中,从EEG中确定频率和通道也是至关重要的,因为它是由许多电极产生的。信号预处理有时也被称为信号增强。一般来说,采集到的大脑信号被噪声和伪迹所污染。
伪影分为生理性和非生理性两种类型。生理外或外部伪影来自身体外部,如设备、故障电极、电源线、通风和数字伪影(接线松散等。)。生理伪影( Interior Artifacts )也被称为来自身体的生理伪影,如眨眼、眼球运动( EOG )、心跳( ECG )、肌肉运动( EMG )、皮肤电阻和电力线干扰等也与大脑信号融合在一起,这些类型的伪影更加难以消除。图5说明了EEG信号存在生理伪迹[ 48、53、61 ]。EEG信号中的伪迹类型如表4所示。
在这里插入图片描述
在这里插入图片描述
一些有效的技术被用于去除伪影,特别是生理伪影,如图6所示。它表明,最普遍使用的算法是基于BSS的方法,特别是ICA ( 34 % ) [ 54 ]。此外,值得注意的是,由于单一回归和BSS等单一策略的限制,近年来许多研究人员倾向于混合方法( 20 % )来提升方法的表现。滤波( 13 % )和小波变换( 9 % )也是去除伪影的算法。尽管对EEG信号的伪迹去除进行了广泛的研究,但对于所有类型的伪迹都没有一致的理想答案[53,57,104].
在这里插入图片描述
这些限制意味着对单一方法的工作有时不能达到可接受的结果,因此选择使用混合方法可以很好地实现EEG癫痫检测的良好性能。

通过使用共同平均参考( CAR ),共同空间模式( CSP ),主成分分析( PCA ),表面拉普拉斯( SL ),独立成分分析( ICA ),频率归一化( Freq-Norm ),单值分解( SVD ),共同空间模式( CSSP ),共同空间子空间分解( CSSD ),差分窗口( DW ),局部平均技术( LAT ),鲁棒卡尔曼滤波,巴特值滤波和简单分类器等方法进行伪影去除。最常用的技术有ICA、PCA、CAR、SL、CSP和自适应滤波[ 19、80 ]。

伪影去除可以分为两种不同的类别。第一种是单一移除技术,另一种是混合移除技术,如图7,8,9所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
表 5 和表 6 介绍了去除伪影技术的优缺点[53,104]。

大多数脑电图的实际应用往往需要进行实时信号处理,以抵御伪影。消除伪影的方法要求是自动的,并且计算成本较低。自动处理表示所选方法能自动识别和消除伪迹,无需人工干预。回归和过滤方法可以自动执行。此外,如上文表 5 所述,如果有 SVM 等后续程序,BSS 方法也将是自动的。
在这里插入图片描述
在这里插入图片描述
另一个因素是所用通道的数量。特别是在家庭医疗环境中,通常需要较少的信道。在这种情况下,BBS 算法无法应用,因为 BSS 的假设是,通道越多,精度越高。然而,小波变换和基于 EMD 的方法只需一个通道即可执行。
基于 ICA 的算法可以处理脑电图记录中出现的伪影。当特定伪像的参考通道可用时,回归和自适应滤波器是更容易实现的选择。除 ICA 外,CCA 及其与其他方法的组合似乎也是去除肌肉伪像的不错选择。对于少数通道的应用,EMD 及其与 BSS 或 WT 的混合方法可能是理想的选择。小波变换无法完全识别与频谱特性重叠的伪影。EMD 还存在模式混合的缺陷。因此,很难找到一种既高效又精确的方法来完美地满足所有条件。

3.2 特征提取

在预处理阶段获得无噪声和伪影的信号后,需要从脑电图信号中提取有效且有意义的特征。从脑电信号中提取特征的技术多种多样,如遗传算法(GA)、小波变换(WT)、小波分组分解(WPD)、经验模式分解(EMD)、快速傅里叶变换(FFT)、PCA、ICA、自适应自动回归参数(AAR)、双线性 AAR 和多变量 AAR。最常见的技术有 ICA、PCA、WT、AR、WPD 和 FFT。这些技术之间的比较见表 7[48,61,149]。
在这里插入图片描述

3.3 分类技术

一旦讨论了检测框架的预处理和特征提取阶段,现在就是区分癫痫发作和无癫痫发作的时候了。分类算法的质量在很大程度上取决于馈送给分类器的特征提取。分类器用于将信号分为不同的类别,因此分类器被认为是一个决策系统。分类器可分为三种类型:线性分类器、非线性分类器和近邻分类器。在生物识别(BCI)中使用最多的是线性和非线性分类器。上表 5 显示了不同类型分类器之间的比较 [48,61]。
分类阶段有两个主要步骤,即训练和测试阶段。提取的特征分为这两个阶段,在训练分类器后,新数据可以用训练好的网络进行分类,这就是所谓的测试阶段。聚类、机器学习或最近的深度神经网络是用于癫痫发作检测系统的分类器。

1-机器学习技术

人工智能(AI)算法是癫痫自动检测框架中最常用的分类器。传统的特征提取方法用于提取特征,并对作为人工智能分类器输入的数据进行统计分析排序和选择。文献中提出了多种分类技术,如 k 近邻(k-NN)、逻辑回归、随机森林、人工神经网络(ANN)、模糊逻辑和具有各种核函数的 SVM。表 8 列出了采用不同特征提取技术的机器学习算法的研究清单。比较适用于最流行和最常用的分类器。这种比较考虑到了每种分类器的优缺点。
在这里插入图片描述
从表 8 中可以看出,遗传算法、贝叶斯网和模糊聚类不是脑电信号处理中常用的分类器 [51,62,84]。LDA、ANN 和 KNN 是很有前途的分类器,准确率很高 [9,55,64]。但 SVM 是最常用的分类器 [22,101,105]。
表 9 说明了 2014 年至 2021 年各种脑电图检测算法的性能。该表显示了分类器和特征提取技术的性能。Upadhyay 等人[131] 使用 DWT 和 LSSVM 分类器的准确率达到 100%。Sriraam 等人[106]使用一种新特征 Teager 能量和监督反向传播技术,准确率达到 96.66%。一些研究,如 Saminu 等人的研究[111],采用了多重特征与 ML 技术。这项研究采用 SVM 和前馈神经网络 (FFNN) 对发作期和发作间期信号进行检测和分类。其计算复杂度较低,准确率高达 99.6%。
在这里插入图片描述
Mahjoub 等人[23]将线性和非线性参数以及多种特征作为其边缘。该研究利用可调 Q 小波变换(TQWT)和多变量经验模式分解(MEMD)的固有模式函数(IMF),直接从脑电图原始数据中提取癫痫脑电图的特征。这种方法与 SVM 相比,准确率高达 98.7%。
从表 9 中可以看出,有几种算法的准确率很高(等于 100%),如参考文献 [65,83,100,101,131] 中的算法。

2-深度学习算法

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
浅层网络是传统神经网络的第二名称,CNN 由许多隐藏层组成(2 层以上到数百层)。由于这些隐藏层的数量庞大,网络的参数也随之增加。CNN 架构中的特征提取步骤是在脑电信号分类过程中自动完成的。最大池化层将卷积层决定/选择的重要特征向前推进。全连接层只需将提取的数据编译给 SoftMax 层,后者将进行二元分类,即把数据转换为 0 和 1 之间的概率。
如今,癫痫发作检测系统采用了深度学习算法,以克服与机器学习技术相关的局限性。DL 采用多层架构,因此无需手动提取特征,还能管理庞大的数据集。利用 DL 技术提出了几种模型:长短期记忆(LSTM)和门控-递归单元(GRU)是递归神经网络,卷积神经网络(CNN)、AE 和 DBN 被用作无监督学习。上表 9 列出了采用深度学习方法的癫痫自动检测作品和分析。
表 10 总结了研究人员之前采用的脑电图检测和分类算法的性能。
从表 10 中可以看出,参考文献 [77] 中的算法具有很高的准确率(等于 100%)。
近年来,出现了多种癫痫发作分类技术。有必要对这些技术的性能进行统计评估。表 11 汇总了不同的技术、所使用的数据库以及它们在准确性、灵敏度和特异性方面的表现。

4.基于物联网的癫痫发作自动检测

癫痫发作是一种种类繁多的疾病,有各种各样的癫痫智能设备可供选择,而这些设备并不容易管理。此外,每个人的癫痫发作都可能不同;仅仅意识到某人患有癫痫,并不能说明他的癫痫是什么样的,也不能说明他有哪些癫痫发作。因此,有必要开发一种准确而精细的方法,在家中对患者进行远程监控。

远程监控允许病人在家中使用移动医疗设备进行常规检测,并将检测信息实时发送给专家。这项研究面临的一个挑战是如何将这些设备融入网络环境,并使其具有可访问性、可发现性和安全性。物联网[70]是将这些物理世界中的实物或事物 "无缝 "整合到网络世界中的一种方式。

物联网(IoT)是指通过计算机网络设计和塑造与互联网连接的事物。物联网 "一词意味着,与其使用笔记本电脑、平板电脑和智能手机等小型有效的小工具,不如使用多个有效的设备。基于医院有线监控系统的传统癫痫检测方法不适合在户外进行长期监控识别。因此,必须建立一个框架,以可穿戴设备或依赖于物联网和云计算的框架中的便携式应用程序为基础,识别病人的癫痫发作,向家属或临床人员发出求救信号。
现有的智能和非智能癫痫设备很多,如表 12 所示。例如,癫痫发作时病人可能在洗澡、躺在床上或在看电视。例如,用于监测摇晃的智能手表在床上佩戴可能不舒服,因此智能床垫将取而代之。同样,用于监测床上运动和声音的伴侣监视器也不适合在淋浴时使用。另一个变数是,癫痫发作的类型多种多样,临床医生并不总能随手找到解决方案;对于我们生活的所有不同环境来说,设备并不合理。

由于最近在传感器开发、处理和显示方面的进步,使设备成为可能,因此癫痫患者通常更喜欢在日常生活中使用智能设备。根据患者的不同情况,一些可穿戴设备几乎可以放置在身体的任何部位:手腕、脚踝、腰部、胸部、手臂、腿部等。产品设计是影响病人与设备适用性的另一个因素。好的设计可以减轻心理和生理压力,减少学习曲线,提高用户在使用设备时的设备操作性,从而提高产品的整体质量。最近,有的癫痫设备和应用程序可以跟踪药物治疗情况并发送服药提醒,有的用于紧急情况,在癫痫发作失去意识前按下按钮,有的根据抽搐模式检测癫痫发作。因此,选择最合适的设备至关重要,要找到设备对癫痫发作类型可靠性的证据,特别是要避免 “错误警报,因为错误警报会对家人造成干扰”。癫痫患者必须 “与医生讨论每种装置的利弊”。表 13 列出了不同物联网方法的比较研究。最后,增加了表 14,以说明物联网系统中 ML/DL 的一般区别。
在这里插入图片描述
在这里插入图片描述
癫痫发作自动检测系统的基本构件如图 10 所示。建议的框架由三个关键阶段组成,它们相互协作以实现系统目标。每个阶段都提供和交付特定的任务和操作,并与其他阶段协调一致。这三个阶段如下:
在这里插入图片描述

  • 第 1 阶段:在这一阶段,基于物联网的可穿戴医疗传感器和智能手机可用于实时数据采集。这些设备将与患者的脑电图数据采集器相连。
  • 第2阶段:在这一阶段,将利用云计算提供处理和存储资源池,通过互联网接收智能手机上的患者数据,并对其进行分类,然后供医生检查。此外,数据的探索和处理将在云中进行,以便检测病人数据中的任何紊乱,因此,病人数据中的异常变化将根据病人的状态进行分类。所有获取数据和提取知识的结果都将可靠有效地报告给健康提供者,如朋友、家人和医务人员。总之,云计算通过其基础设施实现了协作和信息共享,使医务人员和专家能够托管信息、分析和诊断。这样就能更早地使用药物,并实时更新病人的数据和状态。
  • 第3阶段:在这一阶段,医务人员使用基于云的网络监控系统监控患者的记录和感官脑电图数据。医务人员可以查看云分析系统提供的报告,并采取适当措施。

5.挑战和展望

基于脑电图的癫痫发作检测工作面临以下挑战:

  • 提高癫痫发作数据质量的癫痫发作自动标记技术。
  • 准确的专业数据库,因为癫痫发作监测对患者或护理人员的治疗决策至关重要。不准确的癫痫发作记录会对患者的治疗产生不良影响。
  • 还需要一个实时癫痫发作检测系统和专家的后续评估。
  • 由于技术原因,获得较长录音的问题难
  • 需要主动按下报警按钮的紧急呼叫系统不适合大多数癫痫患者,因此需要采用其他方法。
  • 诊断的准确性仍有欠缺,因此需要结合测量自主参数(如心率或肌肉活动)的多模态方法来检测这些癫痫发作。
  • 在癫痫发作检测算法 (SDA) 的准确性与检测速度之间进行权衡时,这种改进可能会以增加监测的侵入性为代价。
  • 处理非稳态和噪音。脑电图容易产生许多不同的假象,阻碍观察潜在的大脑活动。
  • 计算成本最小化。
  • SDA 性能评估。要正确评估任何 SDA 的性能,都需要对其进行广泛的预期验证。

关于这个有趣的课题,有几个开放式研究点可以引导研究人员开展以下工作:

  • 研究Corona病毒对癫痫患者的影响,以及它如何影响脑电图信号。
  • 利用脑电信号的频谱图图像,开发高效的癫痫发作检测模型。
  • 利用物联网远程监控癫痫患者。
  • 必须根据问题的特殊性谨慎选择深度学习结构,并将相关数据集纳入实时癫痫检测。同样,也应广泛研究混合深度学习技术。
  • 必须谨慎选择基于人工智能的分类器,以免遗漏或跳过所有相关的脑电图通道和电极。
  • 开发供医生和家庭成员远程观察癫痫患者的移动应用程序。
  • 癫痫发作数据集规模大、维度高,需要利用降维方法来降低数据集维度,同时保留重要的信号信息,这一点有待进一步探索。因此,应相信适当的特征能降低分类器的计算复杂度和时间。

6.结论

近年来,使用人工监测和研究脑电图来诊断癫痫是一项非常困难和具有挑战性的工作,需要观察长时间的记录并通过经验做出决策。随着癫痫患者的增加,准确识别的意义越来越大。同样,从海量信息中准确识别癫痫发作也变得极具挑战性。此外,由于此类数据集中脑电信号的复杂性,机器和深度学习算法分类器是准确识别癫痫发作的有用且合适的工具。因此,提供一个自动癫痫发作检测系统是有先决条件的,它是神经科医生进行癫痫诊断的一个有前途的工具。必须对癫痫发作检测技术进行深入研究,以改善结果。因此,本研究对各种自动脑电图癫痫发作检测和分类技术进行了调查和审查。此外。它强调了传统的特征提取技术以及统计和机器学习分类器。此外,这项工作还重点关注了用于癫痫检测的物联网框架的发展趋势。最后,检查了脑电图癫痫发作检测中的挑战和开放研究点。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值