713. 乘积小于 K 的子数组 - 力扣(LeetCode) (leetcode-cn.com)
给你一个整数数组 nums 和一个整数 k ,请你返回子数组内所有元素的乘积严格小于 k 的连续子数组的数目。
示例 1:
输入:nums = [10,5,2,6], k = 100
输出:8
解释:8 个乘积小于 100 的子数组分别为:[10]、[5]、[2],、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。
示例 2:
输入:nums = [1,2,3], k = 0
输出:0
提示:
1 < = n u m s . l e n g t h < = 3 ∗ 1 0 4 1 <= nums.length <= 3 * 10^4 1<=nums.length<=3∗104
1 < = n u m s [ i ] < = 1000 1 <= nums[i] <= 1000 1<=nums[i]<=1000
0 < = k < = 1 0 6 0 <= k <=10^6 0<=k<=106
思路分析
利用滑动窗口求解本问题
一般题目要求求“连续子数组”的(最大/最小)个数时,可以试一试滑动窗口
在滑动窗口处理的同时,需要额外维护一个中间变量 p r o d prod prod保存当前子数组的乘积值
由于本题数据范围 n u m s . l e n g t h < = 3 ∗ 1 0 4 nums.length <= 3 * 10^4 nums.length<=3∗104并且每一个数不超过1000,最大范围在1 0 7 0^7 07,因此 p r o d prod prod不会爆int(int的范围在 1 0 9 10^9 109次方级别,long long的范围在 1 0 18 10^{18} 1018次方级别)
算法的具体思路:
- 初始化左右指针lo、hi,并且采用左指针收缩右指针扩张的方式(即固定右指针)
- 每一次右指针移动一个单位,并且让中间值prod乘上nums[hi]
- 如果prod<k,则右指针保持右移(当前窗口内的乘积小于k,合法)
- 否则,收缩滑动窗口,让左指针右移,直到prod<k为止
- 累加合法的子数组个数,记为hi - lo + 1
为什么是加上hi-lo+1?
每一次循环后,此时新滑动窗口下的子数组的组合数量为:
[lo, lo + 1, lo + 2, ..., hi],
[lo + 1, lo + 2, ..., hi],
[lo + 2, lo + 3, ..., hi],
[lo + 3, lo + 4, ..., hi],
...,
[hi - 2, hi - 1, hi],
[hi - 1, hi], [hi]
共计为 h i − l o + 1 hi - lo + 1 hi−lo+1个
代码实现
class Solution {
public:
int numSubarrayProductLessThanK(vector<int>& nums, int k) {
if(k <= 1) return 0;
int n = nums.size();
int prod = 1;
int ans = 0;
for(int lo = 0, hi = 0; hi < n; hi++) {
prod *= nums[hi];
// 如果大于等于k,左指针右移,直到小于k为止
while(prod >= k)
prod /= nums[lo++];
ans += hi - lo + 1;
}
return ans;
}
};
复杂度分析
- 时间复杂度: O ( n ) O(n) O(n),滑动窗口的时间复杂度看似是 O ( n 2 ) O(n^2) O(n2),实则不然。具体分析来看,hi指针会遍历数组所有元素一次,而lo指针对数组每个元素最多只会遍历一次,因此实际的时间复杂度是 O ( 2 ∗ n ) O(2*n) O(2∗n),即为 O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1),只需维护常量空间