【滑动窗口】LeetCode——713.乘积小于 K 的子数组

该博客介绍了如何使用滑动窗口算法解决LeetCode上的713题,即找到所有元素乘积小于给定整数k的连续子数组的个数。在不超过10^7的乘积范围内,通过维护一个左闭右开的窗口,不断更新乘积并移动指针,可以有效地在O(n)时间内找到答案。博客内容详细分析了算法思路并提供了C++代码实现。
摘要由CSDN通过智能技术生成

713. 乘积小于 K 的子数组 - 力扣(LeetCode) (leetcode-cn.com)

给你一个整数数组 nums 和一个整数 k ,请你返回子数组内所有元素的乘积严格小于 k 的连续子数组的数目。

示例 1:

输入:nums = [10,5,2,6], k = 100
输出:8
解释:8 个乘积小于 100 的子数组分别为:[10]、[5]、[2],、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。
示例 2:

输入:nums = [1,2,3], k = 0
输出:0

提示:
1 < = n u m s . l e n g t h < = 3 ∗ 1 0 4 1 <= nums.length <= 3 * 10^4 1<=nums.length<=3104
1 < = n u m s [ i ] < = 1000 1 <= nums[i] <= 1000 1<=nums[i]<=1000
0 < = k < = 1 0 6 0 <= k <=10^6 0<=k<=106

思路分析

利用滑动窗口求解本问题

一般题目要求求“连续子数组”的(最大/最小)个数时,可以试一试滑动窗口

在滑动窗口处理的同时,需要额外维护一个中间变量 p r o d prod prod保存当前子数组的乘积值

由于本题数据范围 n u m s . l e n g t h < = 3 ∗ 1 0 4 nums.length <= 3 * 10^4 nums.length<=3104并且每一个数不超过1000,最大范围在1 0 7 0^7 07,因此 p r o d prod prod不会爆int(int的范围在 1 0 9 10^9 109次方级别,long long的范围在 1 0 18 10^{18} 1018次方级别)

算法的具体思路:

  • 初始化左右指针lo、hi,并且采用左指针收缩右指针扩张的方式(即固定右指针)
  • 每一次右指针移动一个单位,并且让中间值prod乘上nums[hi]
  • 如果prod<k,则右指针保持右移(当前窗口内的乘积小于k,合法)
  • 否则,收缩滑动窗口,让左指针右移,直到prod<k为止
  • 累加合法的子数组个数,记为hi - lo + 1

为什么是加上hi-lo+1?

每一次循环后,此时新滑动窗口下的子数组的组合数量为:

[lo, lo + 1, lo + 2, ..., hi],
[lo + 1, lo + 2, ..., hi],
[lo + 2, lo + 3, ..., hi],
[lo + 3, lo + 4, ..., hi],
..., 
[hi - 2, hi - 1, hi],
[hi - 1, hi], [hi]

共计为 h i − l o + 1 hi - lo + 1 hilo+1

代码实现

class Solution {
public:
    int numSubarrayProductLessThanK(vector<int>& nums, int k) {
        if(k <= 1)  return 0;

        int n = nums.size();

        int prod = 1;
        int ans = 0;
        for(int lo = 0, hi = 0; hi < n; hi++) {
            prod *= nums[hi];

            // 如果大于等于k,左指针右移,直到小于k为止
            while(prod >= k) 
                prod /= nums[lo++];
            
            ans += hi - lo + 1;
        }

        return ans;
    }
};

复杂度分析

  • 时间复杂度: O ( n ) O(n) On,滑动窗口的时间复杂度看似是 O ( n 2 ) O(n^2) On2,实则不然。具体分析来看,hi指针会遍历数组所有元素一次,而lo指针对数组每个元素最多只会遍历一次,因此实际的时间复杂度是 O ( 2 ∗ n ) O(2*n) O2n,即为 O ( n ) O(n) On
  • 空间复杂度: O ( 1 ) O(1) O1,只需维护常量空间
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值