相机标定
Eason.wxd
我是Eason,我喂自己袋盐...
展开
-
相机模型与标定(十一)--LMEDS,M估计,RANSAC估计对比
原文:http://blog.csdn.net/lanbing510/article/details/50053865图像配准对于运动平台(无人机,移动机器人)上的视觉处理有着极其重要的作用。配准算法的第一步通常是找到两幅图像中一一对应的匹配点对(特征点提取、描述、点对匹配),然后通过匹配点对求取变换矩阵。在图像特征点匹配之KD-Tree一文中讲了配准中第一步中的点对匹配方法,本文将集转载 2016-07-26 15:55:07 · 7733 阅读 · 0 评论 -
相机模型与标定(十二)--opencv圆形标志点检测算法
本来以为圆形检测比较简单,实际还是花费我近一上午时间,网上几乎没有相关资料(除了OpenCV官网)。这里坐下简单介绍,分享给大家。非对称圆形标定物检测:1.findCirclesGrid函数的使用,如下: case ASYMMETRIC_CIRCLES_GRID: boardSize.width = 4; boardSize.height = 11原创 2016-07-27 15:34:29 · 27190 阅读 · 16 评论 -
相机模型与标定(十三)--鱼眼相机标定
原文:http://blog.csdn.net/u010784534/article/details/50474371先看一张鱼眼相机拍摄出来的结果:从图中可以看出很明显的畸变。对鱼眼相机标定,有时候也可以用普通相机的标定方法对其进行标定,但是却不能保证去畸变后的效果是最好的。因此对于Gopro等鱼眼镜头拍摄出来的图像去畸变,最好的方法就是采用鱼眼相机标定方法进行标定。鱼眼相机转载 2016-07-28 13:25:20 · 15361 阅读 · 2 评论 -
相机模型与标定(十四)--误差分析
原文:http://blog.sina.com.cn/s/blog_a492c33d0101d97n.html 看到论坛里有不少人在用OpenCV中的标定函数cvCalibrateCamera2 进行相机标定时遇到不少问题,说一些自己的看法。 1)因为cvCalibrateCamera2 函数主要是用张正友的平面标定方法的,所以首先我建议大家看一下张正友的那篇经典的论文完转载 2016-07-29 11:22:01 · 17566 阅读 · 1 评论 -
相机模型与标定(二)--相机模型
1、图像坐标系如图2.1所示,以图像左上角为原点建立以像素为单位的直接坐标系u-v。像素的横坐标u与纵坐标v分别是在其图像数组中所在的列数与所在行数。(在OpenCV中u对应x,v对应y)由于(u,v)只代表像素的列数与行数,而像素在图像中的位置并没有用物理单位表示出来,所以,我们还要建立以物理单位(如毫米)表示的图像坐标系x-y。将相机转载 2016-07-24 20:42:33 · 13641 阅读 · 0 评论 -
相机模型与标定(五)--opencv棋盘格角点检测算法
原文:http://blog.csdn.net/b5w2p0/article/details/18446961很简单,作者写的差不多对,不高兴改了。。。刚接触图像处理是从摄像机标定开始,一直好奇opencv程序中是怎么实现棋盘定位的。自己也曾用matlab写过摄像机标定的整个过程,在图像中检测出棋盘的位置是整个标定过程的第一步,但一直不稳定,不知道opencv中采用什么算法检测棋盘的位转载 2016-07-25 10:42:55 · 17387 阅读 · 1 评论 -
相机模型与标定(四)--opencv单目标定例子使用说明
原文:http://blog.csdn.net/t247555529/article/details/47836233最近一个项目要进行相机的标定,作为一个菜鸟,瞎搞一下午才搞定,于是写篇博客记录下~参考资料:(学习笔记)摄像机模型与标定——一次完成标定 http://www.xuebuyuan.com/1586576.html OpenCV sample目录下自带两个与转载 2016-07-25 10:44:15 · 10393 阅读 · 7 评论 -
相机模型与标定(六)--单应性求解
在计算机视觉中,平面的单应性被定义为一个平面到另外一个平面的投影映射。因此一个二维平面上的点映射到摄像机成像仪上的映射就是平面单应性的例子。如果点Q到成像仪上的点q的映射使用齐次坐标,这种映射可以用矩阵相乘的方式表示。若有一下定义:则可以将单应性简单的表示为:这里引入参数s,它是任意尺度的比例(目的是使得单应性定义到该尺度比例)。通常根据习惯放在H的外面。H有两转载 2016-07-25 12:56:54 · 8542 阅读 · 0 评论 -
相机模型与标定(三)--张正友标定
利用摄像机所拍摄到的图像来还原空间中的物体。在这里,不妨假设摄像机所拍摄到的图像与三维空间中的物体之间存在以下一种简单的线性关系:[像]=M[物],这里,矩阵M可以看成是摄像机成像的几何模型。 M中的参数就是摄像机参数。通常,这些参数是要通过实验与计算来得到的。这个求解参数的过程就称为摄像机标定。 中文名 摄像机标定 外文转载 2016-07-24 22:03:19 · 12463 阅读 · 1 评论 -
相机模型与标定(一)--相机标定概述
以下内容来自:http://baike.baidu.com/link?url=RAjUg33ftcbDDjE_tFKS80p_azC9REyLOzBTbqqSq5iIIXo0sp20NJk28RW-6J6ARqg0LGPS-kAEiO-ESqZF-a在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这转载 2015-09-06 08:53:10 · 11542 阅读 · 0 评论 -
相机模型与标定(七)--LM算法在相机标定中的使用
LM算法在相机标定的应用共有三处。(1)单目标定或双目标定中,在内参固定的情况下,计算最佳外参。OpenCV中对应的函数为findExtrinsicCameraParams2。(2)单目标定中,在内外参都不固定的情况下,计算最佳内外参。OpenCV中对应的函数为calibrateCamera2。(3)双目标定中,在左右相机的内外参及左右相机的位姿都不固定的情况下,计算最佳的左右相机的内转载 2016-07-25 14:06:44 · 14168 阅读 · 2 评论 -
相机模型与标定(八)--传统相机标定算法简介
原文:http://blog.sina.com.cn/s/blog_b364631a0101iopy.html一、相机数学模型 相机模型为以后一切标定算法的关键,只有这边有相当透彻的理解,对以后的标定算法才能有更好的理解。本人研究了好长时间,几乎每天都重复看几遍,最终才会明白其推导过程。 我觉得首先我们要理解相机模型中的四个平面坐标系的关系:像素平面坐标系(u转载 2016-07-25 14:51:46 · 10050 阅读 · 0 评论 -
相机模型与标定(十)--RANSAC算法
转自王先荣先生:http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文。 RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从转载 2016-07-26 15:49:16 · 8218 阅读 · 1 评论 -
相机模型与标定(九)--LM算法
LM算法,全称为Levenberg-Marquard,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合。LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其领域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点。LM算法属于一种“信赖域法”——所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是要求一个函数的极小值,每一步迭代中,都转载 2016-07-26 15:09:41 · 12334 阅读 · 0 评论